Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(10): 1616-1627, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667052

RESUMEN

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a 'reservoir'. This reservoir could modulate host immune responses or release viral proteins into the circulation. Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.


Asunto(s)
COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , ARN Viral/genética , SARS-CoV-2 , Antivirales , Progresión de la Enfermedad
2.
Nat Immunol ; 22(1): 67-73, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33169014

RESUMEN

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Asunto(s)
COVID-19/inmunología , Citocinas/inmunología , Inmunoglobulina G/inmunología , Receptores de IgG/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , COVID-19/metabolismo , COVID-19/virología , Niño , Citocinas/metabolismo , Femenino , Glicosilación , Humanos , Inmunoglobulina G/metabolismo , Interleucina-6 , Masculino , Persona de Mediana Edad , Receptores de IgG/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Cell ; 162(1): 160-9, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140596

RESUMEN

Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la Influenza/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Complejo Antígeno-Anticuerpo/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G/inmunología , Células Plasmáticas/inmunología , Receptores de Antígenos de Linfocitos B/química , Receptores Fc/metabolismo , Ácidos Siálicos/metabolismo
5.
Nucleic Acids Res ; 52(14): e63, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38909293

RESUMEN

The microbiome is a complex community of microorganisms, encompassing prokaryotic (bacterial and archaeal), eukaryotic, and viral entities. This microbial ensemble plays a pivotal role in influencing the health and productivity of diverse ecosystems while shaping the web of life. However, many software suites developed to study microbiomes analyze only the prokaryotic community and provide limited to no support for viruses and microeukaryotes. Previously, we introduced the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite to address this critical gap in microbiome research by extending genome-resolved analysis beyond prokaryotes to encompass the understudied realms of eukaryotes and viruses. Here we present VEBA 2.0 with key updates including a comprehensive clustered microeukaryotic protein database, rapid genome/protein-level clustering, bioprospecting, non-coding/organelle gene modeling, genome-resolved taxonomic/pathway profiling, long-read support, and containerization. We demonstrate VEBA's versatile application through the analysis of diverse case studies including marine water, Siberian permafrost, and white-tailed deer lung tissues with the latter showcasing how to identify integrated viruses. VEBA represents a crucial advancement in microbiome research, offering a powerful and accessible software suite that bridges the gap between genomics and biotechnological solutions.


Asunto(s)
Programas Informáticos , Animales , Microbiota/genética , Biología Computacional/métodos , Bacterias/genética , Bacterias/clasificación , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Archaea/genética , Archaea/virología , Genómica/métodos , Eucariontes/genética , Multiómica
6.
Proc Natl Acad Sci U S A ; 120(17): e2208718120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068231

RESUMEN

The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epistasis Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza/genética , Hemaglutininas , Gripe Humana/genética , Gripe Humana/prevención & control
7.
Crit Care ; 27(1): 155, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081485

RESUMEN

BACKGROUND: The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can induce necrotic cell death to promote MACE in patients with severe COVID-19. METHODS: This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analysed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. RESULTS: From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralise viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titters in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes in the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. An active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. CONCLUSION: SARS-CoV-2 identification in the systemic circulation is associated with MACE and necroptosis activity. The increased pMLKL and Troponin-I indicated the occurrence of necroptosis in the heart and suggested necroptosis effectors could serve as biomarkers and/or therapeutic targets. Trial registration Not applicable.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Humanos , Proteínas Quinasas , Necroptosis , Estudios Prospectivos , Troponina I , SARS-CoV-2 , Biomarcadores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores
8.
Mol Ther ; 30(5): 2024-2047, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999208

RESUMEN

Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Adenoviridae/genética , Animales , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C
9.
J Public Health (Oxf) ; 45(1): e104-e113, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36921261

RESUMEN

BACKGROUND: Domestic and sexual violence and abuse (DSVA) is a global public health problem resulting in health inequalities. Community pharmacies are uniquely placed to help people affected by DSVA. We examined factors that impact pharmacists' engagement in response to DSVA when providing public health services. METHODS: Semi-structured qualitative interviews with community pharmacists (n = 20) were analyzed thematically, with inductive themes mapped to the Capability-Opportunity-Motivation Behaviour (COM-B) model. RESULTS: Pharmacists were confident in providing public health services, but a lack of DSVA training meant there is a need to support their 'Capability' to respond to DSVA. Pharmacies were perceived as highly accessible healthcare providers on the high street, with sexual health consultations offering an ideal 'Opportunity' to enquire about DSVA in a private consultation room. Pharmacist's 'Motivation' to enquire about DSVA was driven by potential positive client outcomes and a desire to be more involved in public heath interventions, but organisation- and system-level support and remuneration is needed. CONCLUSIONS: Community pharmacy offers opportunities for integrating DSVA work in existing public health services. Pharmacists need training on DSVA, ongoing support, allocated funding for DSVA work, and awareness raising campaign for the public on their extended public health role.


Asunto(s)
Servicios Comunitarios de Farmacia , Violencia Doméstica , Humanos , Farmacéuticos , Rol Profesional , Violencia Doméstica/prevención & control , Investigación Cualitativa , Actitud del Personal de Salud
10.
Genetica ; 150(3-4): 183-197, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34677750

RESUMEN

Genotype-phenotype causal modeling has evolved significantly since Johannsen's and Wright's original designs were published. The development of genomewide assays to interrogate and detect possible causal variants associated with complex traits has expanded the scope of genotype-phenotype research considerably. Clusters of causal variants discovered by genomewide assays and associated with complex traits have been used to develop polygenic risk scores to predict clinical diagnoses of multidimensional human disorders. However, genomewide investigations have met with many challenges to their research designs and statistical complexities which have hindered the reliability and validity of their predictions. Findings linked to differences in heritability estimates between causal clusters and complex traits among unrelated individuals remain a research area of some controversy. Causal models developed from case-control studies as opposed to experiments, as well as other issues concerning the genotype-phenotype causal model and the extent to which various forms of pleiotropy and the concept of the endophenotype add to its complexity, will be reviewed.


Asunto(s)
Endofenotipos , Herencia Multifactorial , Estudio de Asociación del Genoma Completo/métodos , Humanos , Modelos Genéticos , Fenotipo , Reproducibilidad de los Resultados , Factores de Riesgo
11.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801871

RESUMEN

Machupo virus (MACV), the causative agent of Bolivian hemorrhagic fever (BHF), is a New World arenavirus that was first isolated in Bolivia from a human spleen in 1963. Due to the lack of a specific vaccine or therapy, this virus is considered a major risk to public health and is classified as a category A priority pathogen by the U.S. National Institutes of Health. In this study, we used DNA vaccination against the MACV glycoprotein precursor complex (GPC) and murine hybridoma technology to generate 25 mouse monoclonal antibodies (MAbs) against the GPC of MACV. Out of 25 MAbs, five were found to have potent neutralization activity in vitro against a recombinant vesicular stomatitis virus expressing MACV GPC (VSV-MACV) as well as against authentic MACV. Furthermore, the five neutralizing MAbs exhibited strong antibody-dependent cellular cytotoxicity (ADCC) activity in a reporter assay. When tested in vivo using VSV-MACV in a Stat2-/- mouse model, three MAbs significantly lowered viral loads in the spleen. Our work provides valuable insights into epitopes targeted by neutralizing antibodies that could be potent targets for vaccines and therapeutics and shed light on the importance of effector functions in immunity against MACV.IMPORTANCE MACV infections are a significant public health concern and lead to high case fatality rates. No specific treatment or vaccine for MACV infections exist. However, cases of Junin virus infection, a related virus, can be treated with convalescent-phase serum. This indicates that a MAb-based therapy for MACV could be effective. Here, we describe several MAbs that neutralize MACV and could be used for this purpose.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Arenavirus del Nuevo Mundo/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Americana/prevención & control , Animales , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Modelos Animales de Enfermedad , Epítopos , Femenino , Fiebre Hemorrágica Americana/inmunología , Fiebre Hemorrágica Americana/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Salud Pública , Factor de Transcripción STAT2/genética , Bazo , Vacunas de ADN , Carga Viral
12.
Angew Chem Int Ed Engl ; 60(48): 25269-25273, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34559455

RESUMEN

New multicomponent reactions involving an isocyanide, terminal or internal alkynes, and endohedral metallofullerene (EMF) Lu3 N@C80 yield metallofulleroids which are characterized by mass-spectrometry, HPLC, and multiple 1D and 2D NMR techniques. Single crystal studies revealed one ketenimine metallofulleroid has ordered Lu3 N cluster which is unusual for EMF monoadducts. Computational analysis, based on crystallographic data, confirm that the endohedral cluster motion is controlled by the position of the exohedral organic appendants. Our findings provide a new functionalization reaction for EMFs, and a potential facile approach to freeze the endohedral cluster motion at relatively high temperatures.

13.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31043537

RESUMEN

The mosquito-borne Zika virus (ZIKV) has been causing epidemic outbreaks on a global scale. Virus infection can result in severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Here, we characterized monoclonal antibodies isolated from a patient with an active Zika virus infection that potently neutralized virus infection in Vero cells at the nanogram-per-milliliter range. In addition, these antibodies enhanced internalization of virions into human leukemia K562 cells in vitro, indicating their possible ability to cause antibody-dependent enhancement of disease. Escape variants of the ZIKV MR766 strain to a potently neutralizing antibody, AC10, exhibited an amino acid substitution at residue S368 in the lateral ridge region of the envelope protein. Analysis of publicly availably ZIKV sequences revealed the S368 site to be conserved among the vast majority (97.6%) of circulating strains. We validated the importance of this residue by engineering a recombinant virus with an S368R point mutation that was unable to be fully neutralized by AC10. Four out of the 12 monoclonal antibodies tested were also unable to neutralize the virus with the S368R mutation, suggesting this region to be an important immunogenic epitope during human infection. Last, a time-of-addition infection assay further validated the escape variant and showed that all monoclonal antibodies inhibited virus binding to the cell surface. Thus, the present study demonstrates that the lateral ridge region of the envelope protein is likely an immunodominant, neutralizing epitope.IMPORTANCE Zika virus (ZIKV) is a global health threat causing severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Here, we analyzed the human monoclonal antibody response to acute ZIKV infection and found that neutralizing antibodies could not elicit Fc-mediated immune effector functions but could potentiate antibody-dependent enhancement of disease. We further identified critical epitopes involved with neutralization by generating and characterizing escape variants by whole-genome sequencing. We demonstrate that the lateral ridge region, particularly the S368 amino acid site, is critical for neutralization by domain III-specific antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales , Evasión Inmune , Mutación Puntual , Proteínas del Envoltorio Viral , Virus Zika , Sustitución de Aminoácidos , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Células HEK293 , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Virus Zika/genética , Virus Zika/inmunología
14.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375585

RESUMEN

Early interactions of influenza A virus (IAV) with respiratory epithelium might determine the outcome of infection. The study of global cellular innate immune responses often masks multiple aspects of the mechanisms by which populations of cells work as organized and heterogeneous systems to defeat virus infection, and how the virus counteracts these systems. In this study, we experimentally dissected the dynamics of IAV and human epithelial respiratory cell interaction during early infection at the single-cell level. We found that the number of viruses infecting a cell (multiplicity of infection [MOI]) influences the magnitude of virus antagonism of the host innate antiviral response. Infections performed at high MOIs resulted in increased viral gene expression per cell and stronger antagonist effect than infections at low MOIs. In addition, single-cell patterns of expression of interferons (IFN) and IFN-stimulated genes (ISGs) provided important insights into the contributions of the infected and bystander cells to the innate immune responses during infection. Specifically, the expression of multiple ISGs was lower in infected than in bystander cells. In contrast with other IFNs, IFN lambda 1 (IFNL1) showed a widespread pattern of expression, suggesting a different cell-to-cell propagation mechanism more reliant on paracrine signaling. Finally, we measured the dynamics of the antiviral response in primary human epithelial cells, which highlighted the importance of early innate immune responses at inhibiting virus spread.IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen of high importance to public health. Annual epidemics of seasonal IAV infections in humans are a significant public health and economic burden. IAV also causes sporadic pandemics, which can have devastating effects. The main target cells for IAV replication are epithelial cells in the respiratory epithelium. The cellular innate immune responses induced in these cells upon infection are critical for defense against the virus, and therefore, it is important to understand the complex interactions between the virus and the host cells. In this study, we investigated the innate immune response to IAV in the respiratory epithelium at the single-cell level, providing a better understanding on how a population of epithelial cells functions as a complex system to orchestrate the response to virus infection and how the virus counteracts this system.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/virología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/metabolismo , Interferones/biosíntesis , Interleucinas/biosíntesis , Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata/genética , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/virología , Interferones/genética , Interleucinas/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Análisis de la Célula Individual , Proteínas no Estructurales Virales/genética
15.
Proc Natl Acad Sci U S A ; 114(38): 10172-10177, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28874545

RESUMEN

The main barrier to reduction of morbidity caused by influenza is the absence of a vaccine that elicits broad protection against different virus strains. Studies in preclinical models of influenza virus infections have shown that antibodies alone are sufficient to provide broad protection against divergent virus strains in vivo. Here, we address the challenge of identifying an immunogen that can elicit potent, broadly protective, antiinfluenza antibodies by demonstrating that immune complexes composed of sialylated antihemagglutinin antibodies and seasonal inactivated flu vaccine (TIV) can elicit broadly protective antihemagglutinin antibodies. Further, we found that an Fc-modified, bispecific monoclonal antibody against conserved epitopes of the hemagglutinin can be combined with TIV to elicit broad protection, thus setting the stage for a universal influenza virus vaccine.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina G/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Receptores de IgE/inmunología , Animales , Perros , Femenino , Humanos , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL
16.
Neurocrit Care ; 33(2): 623-624, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32812196

RESUMEN

The original article had a typo in Table 2, the "N" for males and females should be switched. The corrected table is shown below.

17.
J Environ Manage ; 261: 110210, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148280

RESUMEN

A relatively large number of studies have investigated the effectiveness of vegetated buffer strips at reducing the movement of pesticides and nutrients from agriculture fields. This review outlines the observed influence of different factors (e.g., buffer width, slope, runoff intensity, soil composition, plant community) that can influence the efficacy of vegetated buffers in pesticide and nutrient retention. The reported effectiveness of vegetated buffers reducing the movement of pesticides and nutrients ranged from 10 to 100% and 12-100%, respectively. Buffer width is the factor that is most frequently considered by various jurisdictions when making recommendations on vegetated buffer strip implementation. However, the literature clearly illustrates that there is a great deal of variation in pesticide or nutrient reduction for a given buffer width. This indicates that other factors play an important role in buffer efficacy (e.g., ratio of source area to buffer area, soil composition and structure, runoff intensity, plant community structure) in addition to the width of the vegetative buffer area. These factors need to be considered when making recommendations on vegetated buffer strip construction in agroecosystems. This review has also identified a number of other gaps in the understanding of the effectiveness of vegetated buffers at reducing the movement of pesticides and nutrients from the areas of application.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Agricultura , Nutrientes , Plantas
18.
Mol Pharmacol ; 96(2): 148-157, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31175183

RESUMEN

The Food and Drug Administration-approved influenza A antiviral amantadine inhibits the wild-type (WT) AM2 channel but not the S31N mutant predominantly found in circulating strains. In this study, serial viral passages were applied to select resistance against a newly developed isoxazole-conjugated adamantane inhibitor that targets the AM2 S31N channel. This led to the identification of the novel drug-resistant mutation L46P located outside the drug-binding site, which suggests an allosteric resistance mechanism. Intriguingly, when the L46P mutant was introduced to AM2 WT, the channel remained sensitive toward amantadine inhibition. To elucidate the molecular mechanism, molecular dynamics simulations and binding free energy molecular mechanics-generalized born surface area (MM-GBSA) calculations were performed on WT and mutant channels. It was found that the L46P mutation caused a conformational change in the N terminus of transmembrane residues 22-31 that ultimately broadened the drug-binding site of AM2 S31N inhibitor 4, which spans residues 26-34, but not of AM2 WT inhibitor amantadine, which spans residues 31-34. The MM-GBSA calculations showed stronger binding stability for 4 in complex with AM2 S31N compared with 4 in complex with AM2 S31N/L46P, and equal binding free energies of amantadine in complex with AM2 WT and AM2 L46P. Overall, these results demonstrate a unique allosteric resistance mechanism toward AM2 S31N channel blockers, and the L46P mutant represents the first experimentally confirmed drug-resistant AM2 mutant that is located outside of the pore where drug binds. SIGNIFICANCE STATEMENT: AM2 S31N is a high-profile antiviral drug target, as more than 95% of currently circulating influenza A viruses carry this mutation. Understanding the mechanism of drug resistance is critical in designing the next generation of AM2 S31N channel blockers. Using a previously developed AM2 S31N channel blocker as a chemical probe, this study was the first to identify a novel resistant mutant, L46P. The L46P mutant is located outside of the drug-binding site. Molecular dynamics simulations showed that L46P causes a dilation of drug-binding site between residues 22 and 31, which affects the binding of AM2 S31N channel blockers, but not the AM2 WT inhibitor amantadine.


Asunto(s)
Amantadina/farmacología , Antivirales/farmacología , Virus de la Influenza A/metabolismo , Mutación , Proteínas de la Matriz Viral/genética , Regulación Alostérica/efectos de los fármacos , Secuencias de Aminoácidos , Animales , Antivirales/química , Sitios de Unión , Perros , Farmacorresistencia Viral , Femenino , Humanos , Virus de la Influenza A/efectos de los fármacos , Células de Riñón Canino Madin Darby , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Pase Seriado , Relación Estructura-Actividad , Proteínas de la Matriz Viral/química , Xenopus laevis
19.
Proc Natl Acad Sci U S A ; 113(40): E5944-E5951, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647907

RESUMEN

Influenza virus strain-specific monoclonal antibodies (mAbs) provide protection independent of Fc gamma receptor (FcγR) engagement. In contrast, optimal in vivo protection achieved by broadly reactive mAbs requires Fc-FcγR engagement. Most strain-specific mAbs target the head domain of the viral hemagglutinin (HA), whereas broadly reactive mAbs typically recognize epitopes within the HA stalk. This observation has led to questions regarding the mechanism regulating the activation of Fc-dependent effector functions by broadly reactive antibodies. To dissect the molecular mechanism responsible for this dichotomy, we inserted the FLAG epitope into discrete locations on HAs. By characterizing the interactions of several FLAG-tagged HAs with a FLAG-specific antibody, we show that in addition to Fc-FcγR engagement mediated by the FLAG-specific antibody, a second intermolecular bridge between the receptor-binding region of the HA and sialic acid on effector cells is required for optimal activation. Inhibition of this second molecular bridge, through the use of an F(ab')2 or the mutation of the sialic acid-binding site, renders the Fc-FcγR interaction unable to optimally activate effector cells. Our findings indicate that broadly reactive mAbs require two molecular contacts to possibly stabilize the immunologic synapse and potently induce antibody-dependent cell-mediated antiviral responses: (i) the interaction between the Fc of a mAb bound to HA with the FcγR of the effector cell and (ii) the interaction between the HA and its sialic acid receptor on the effector cell. This concept might be broadly applicable for protective antibody responses to viral pathogens that have suitable receptors on effector cells.


Asunto(s)
Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Orthomyxoviridae/inmunología , Receptores Fc/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/química , Citotoxicidad Celular Dependiente de Anticuerpos , Epítopos/química , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Inmunidad Celular , Modelos Biológicos , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , Receptores Fc/química
20.
Proc Natl Acad Sci U S A ; 113(42): 11931-11936, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698132

RESUMEN

The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising "universal" influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.


Asunto(s)
Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Epítopos/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos/inmunología , Antígenos Virales/química , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Unión Competitiva , Biomarcadores , Línea Celular , Epítopos/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/inmunología , Gripe Humana/metabolismo , Gripe Humana/virología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Modelos Biológicos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Fc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA