Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Biomech ; 34(5): 354-360, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29651910

RESUMEN

This study aimed to compare head impact exposures between practices and games in football players ages 9 to 14 years, who account for approximately 70% of all football players in the United States. Over a period of 2 seasons, 136 players were enrolled from 3 youth programs, and 49,847 head impacts were recorded from 345 practices and 137 games. During the study, individual players sustained a median of 211 impacts per season, with a maximum of 1226 impacts. Players sustained 50th (95th) percentile peak linear acceleration of 18.3 (46.9) g, peak rotational acceleration of 1305.4 (3316.6) rad·s-2, and Head Impact Technology Severity Profile of 13.7 (24.3), respectively. Overall, players with a higher frequency of head impacts at practices recorded a higher frequency of head impacts at games (P < .001, r2 = .52), and players who sustained a greater average magnitude of head impacts during practice also recorded a greater average magnitude of head impacts during games (P < .001). The youth football head impact data quantified in this study provide valuable insight into the player exposure profile, which should serve as a key baseline in efforts to reduce injury.


Asunto(s)
Traumatismos Craneocerebrales/prevención & control , Fútbol Americano/lesiones , Dispositivos de Protección de la Cabeza , Aceleración , Adolescente , Fenómenos Biomecánicos , Niño , Traumatismos Craneocerebrales/fisiopatología , Movimientos de la Cabeza/fisiología , Humanos , Masculino , Estados Unidos
2.
Ann Biomed Eng ; 50(11): 1488-1497, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35507229

RESUMEN

The relationship between head impact and subsequent brain injury for American football players is not well-defined, especially for youth. The objective of this study is to quantify and assess Head Impact Exposure (HIE) metrics among youth and collegiate football players. This multi-season study enrolled 639 unique athletes (354 collegiate; 285 youth, ages 9-14), recording 476,209 head impacts (367,337 collegiate; 108,872 youth) over 971 sessions (480 collegiate; 491 youth). Youth players experienced 43 and 65% fewer impacts per competition and practice, respectively, and lower impact magnitudes compared to collegiate players (95th percentile peak linear acceleration (PLA, g) competition: 45.6 vs 61.9; 95th percentile PLA practice: 42.6 vs 58.8; 95th percentile peak rotational acceleration (PRA, rad·s-2) competition: 2262 vs 4422; 95th percentile PRA practice: 2081 vs 4052; 95th percentile HITsp competition: 25.4 vs 32.8; 95th percentile HITsp practice: 23.9 vs 30.2). Impacts during competition were more frequent and of greater magnitude than during practice at both levels. Quantified comparisons of head impact frequency and magnitude between youth and collegiate athletes reveal HIE differences as a function of age, and expanded insight better informs the development of age-appropriate guidelines for helmet design, prevention measures, standardized testing, brain injury diagnosis, and recovery management.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Fútbol Americano , Adolescente , Humanos , Niño , Fútbol Americano/lesiones , Dispositivos de Protección de la Cabeza , Aceleración , Cabeza , Poliésteres , Fenómenos Biomecánicos
3.
Ann Biomed Eng ; 48(1): 92-103, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31659605

RESUMEN

Physical differences between youth and adults, which include incomplete myelination, limited neck muscle development, and a higher head-body ratio in the youth population, likely contribute towards the increased susceptibility of youth to concussion. Previous research efforts have considered the biomechanics of concussion for adult populations, but these known age-related differences highlight the necessity of quantifying the risk of concussion for a youth population. This study adapted the previously developed Generalized Acceleration Model for Brian Injury Threshold (GAMBIT) that combines linear and rotational head acceleration to model the risk of concussion for a youth population with the Generalized Acceleration Model for Concussion in Youth (GAM-CY). Survival analysis was used in conjunction with head impact data collected during participation in youth football to model risk between individuals who sustained medically-diagnosed concussions (n = 15). Receiver operator characteristic curves were generated for peak linear acceleration, peak rotational acceleration, and GAM-CY, all of which were observed to be better injury predictors than random guessing. GAM-CY was associated with an area under the curve of 0.89 (95% confidence interval: 0.82-0.95) when all head impacts experienced by the concussed players were considered. Concussion tolerance was observed to be lower for youth athletes, with average peak linear head acceleration of 62.4 ± 29.7 g compared to 102.5 ± 32.7 g for adults and average peak rotational head acceleration of 2609 ± 1591 rad/s2 compared to 4412 ± 2326 rad/s2. These data provide further evidence of age-related differences in concussion tolerance and may be used for the development of youth-specific protective designs.


Asunto(s)
Aceleración , Conmoción Encefálica/fisiopatología , Cabeza/fisiología , Modelos Teóricos , Rotación , Acelerometría , Adolescente , Niño , Fútbol Americano/fisiología , Humanos , Riesgo
4.
Am J Sports Med ; 47(14): 3498-3504, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31697564

RESUMEN

BACKGROUND: Concern for head injuries is widespread and has been reported by the media to be the number one cause of decreased participation in football among the American youth population. Identifying player mechanisms associated with intentional, or purposeful, head impacts should provide critical data for rule modifications, educational programs, and equipment design. PURPOSE: To investigate the frequency of intentional and unintentional head impacts and to examine the player mechanisms associated with intentional high-magnitude head impacts by comparing the impact mechanism distributions among session type, player position, and ball possession. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Head impact sensors and video footage of 68 players were used to analyze and classify 1319 high-magnitude impacts recorded over 1 season of youth football. RESULTS: In total, 80% of the high-magnitude head impacts were classified as being caused by intentional use of the head. Head-to-head impact was the primary impact mechanism (n = 868; 82.7%) within the 1050 intentional high-magnitude impacts, with classifiable mechanisms, followed by head-to-body (n = 139; 13.2%), head-to-ground (n = 34; 3.2%), and head-to-equipment (n = 9; 0.9%). Head-to-head impacts also accounted for a greater proportion of impacts during practices (n = 625; 88.9%) than games, for linemen (n = 585; 90.3%) than perimeters and backs, and for ball carriers (n = 72; 79.1%) than tacklers. CONCLUSION: Overall, the majority of high-magnitude head impacts were intentional and resulted from head-to-head contact. The proportion of head-to-head contact was significantly higher for practices than games, linemen than backs and perimeter players, and ball carriers than tacklers.


Asunto(s)
Aceleración , Traumatismos Craneocerebrales/epidemiología , Fútbol Americano/lesiones , Adolescente , Conmoción Encefálica/epidemiología , Estudios Transversales , Diseño de Equipo , Movimientos de la Cabeza , Dispositivos de Protección de la Cabeza , Humanos , Masculino , Medición de Riesgo , Estados Unidos
5.
Cartilage ; 9(3): 293-303, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29986604

RESUMEN

Objective Early intervention therapies targeting inflammation and cell death during the acute phase of cartilage injury have the potential to prevent posttraumatic osteoarthritis. The objective of this study was to investigate the effects of interleukin receptor antagonist protein (IRAP), hyaluronan (HA), dexamethasone (DEX), and mesenchymal stem cell (MSC) treatment on the expression of established genetic markers for matrix degradation, apoptosis, and inflammation in articular cartilage during the acute phase of injury. Design A custom impact device was used to create replicable injury ex vivo to intact porcine knee joint. One hour after impact, IRAP, HA, DEX, or MSCs was intra-articularly injected. At 8 hours postinjury, cartilage and meniscus samples were harvested for genetic expression analysis. Expression of miR-27b, miR-140, miR-125b, miR-16, miR-34a, miR-146a, miR-22, ADAMTS-4, ADAMTS-5, MMP-3, IL-1ß, and TNF-α was analyzed by real-time polymerase chain reaction. Results At 8 hours postinjury, expression of ADAMTS-4, ADAMTS-5, MMP-3, IL-1ß, and TNF-α in cartilage was significantly decreased in IRAP- and DEX-treated joints as compared to nontreated injured joints, whereas only IRAP upregulated expression of miR-140, miR-125b, miR-27b, miR-146a, and miR-22 in cartilage. HA and MSC treatments had no significant effects on catabolic and inflammatory gene expression in cartilage. However, HA treatment significantly upregulated expression of all miRNAs except miR-16. In addition, the treatments tested also exhibited significant influences on meniscus. Conclusions This study provides a valuable starting point for further research into potential targets for and efficacy of various early intervention strategies that may delay or prevent the progression of posttraumatic osteoarthritis after acute cartilage injury.


Asunto(s)
Antiinflamatorios/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Osteoartritis de la Rodilla/genética , Proteína ADAMTS4/efectos de los fármacos , Proteína ADAMTS4/genética , Proteína ADAMTS5/efectos de los fármacos , Proteína ADAMTS5/genética , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/lesiones , Muerte Celular/efectos de los fármacos , Células Cultivadas/metabolismo , Condrocitos/efectos de los fármacos , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Expresión Génica , Ácido Hialurónico/administración & dosificación , Ácido Hialurónico/uso terapéutico , Inflamación/metabolismo , Inyecciones Intraarticulares/métodos , Metaloproteinasa 3 de la Matriz/efectos de los fármacos , Metaloproteinasa 3 de la Matriz/genética , Menisco/efectos de los fármacos , Menisco/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , MicroARNs/genética , Modelos Animales , Osteoartritis de la Rodilla/prevención & control , Receptores de Interleucina/antagonistas & inhibidores , Receptores de Interleucina/uso terapéutico , Porcinos , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética
6.
J Orthop Res ; 34(5): 779-90, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26505891

RESUMEN

In knee osteoarthritis (OA), concentrations of interleukin (IL)-1ß and tumor necrosis factor (TNF)-α increase in joint tissues and synovial fluid which incite a catabolic cascade and further the progression of OA. Several microRNAs (miRNA) have been associated with apoptosis (miR-16), inflammation (miR-22, miR-146a), and matrix degradation (miR-140, miR-27b) in developed OA or its symptoms. In this study, the time- and concentration-dependent nature of cellular and extracellular miRNAs in synoviocytes, meniscus cells, and chondrocytes as influenced by inflammatory cytokines was investigated. For time-dependent studies, three cell types were stimulated with 10 ng/ml IL-1ß or 50 ng/ml TNF-α for 8, 16, and 24 h. For concentration-dependent studies, chondrocytes were stimulated with a higher level of IL-1ß (20 ng/ml) or TNF-α (100 ng/ml) for 8 h. Cellular and extracellular expressions of miR-22, miR-16, miR-146a, miR-27b, and miR-140 were analyzed by RT-PCR. Time-dependent cellular miRNA expressions were similar across the three cell types with miR-146a significantly up-regulated and miR-27b significantly down-regulated at all time points. However, chondrocytes exhibited a unique extracellular miRNA profile with an increased release rate of miR-27b at 24 h. Our findings support further research into the characterization of miRNAs in synovial fluid for the development of early detection strategies of OA or cartilage injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:779-790, 2016.


Asunto(s)
Condrocitos/metabolismo , Meniscos Tibiales/metabolismo , MicroARNs/metabolismo , Osteoartritis/metabolismo , Sinoviocitos/metabolismo , Animales , Células Cultivadas , Interleucina-1beta , Meniscos Tibiales/citología , Porcinos , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA