Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neural Comput ; 31(7): 1327-1355, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31113305

RESUMEN

This letter proposes a novel method, multi-input, multi-output neuronal mode network (MIMO-NMN), for modeling encoding dynamics and functional connectivity in neural ensembles such as the hippocampus. Compared with conventional approaches such as the Volterra-Wiener model, linear-nonlinear-cascade (LNC) model, and generalized linear model (GLM), the NMN has several advantages in terms of estimation accuracy, model interpretation, and functional connectivity analysis. We point out the limitations of current neural spike modeling methods, especially the estimation biases caused by the imbalanced class problem when the number of zeros is significantly larger than ones in the spike data. We use synthetic data to test the performance of NMN with a comparison of the traditional methods, and the results indicate the NMN approach could reduce the imbalanced class problem and achieve better predictions. Subsequently, we apply the MIMO-NMN method to analyze data from the human hippocampus. The results indicate that the MIMO-NMN method is a promising approach to modeling neural dynamics and analyzing functional connectivity of multi-neuronal data.


Asunto(s)
Simulación por Computador , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Hipocampo/fisiología , Humanos , Dinámicas no Lineales
2.
Neural Comput ; 30(1): 149-183, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29064783

RESUMEN

This letter examines the results of input-output (nonparametric) modeling based on the analysis of data generated by a mechanism-based (parametric) model of CA3-CA1 neuronal connections in the hippocampus. The motivation is to obtain biological insight into the interpretation of such input-output (Volterra-equivalent) models estimated from synthetic data. The insights obtained may be subsequently used to interpretat input-output models extracted from actual experimental data. Specifically, we found that a simplified parametric model may serve as a useful tool to study the signal transformations in the hippocampal CA3-CA1 regions. Input-output modeling of model-based synthetic data show that GABAergic interneurons are responsible for regulating neuronal excitation, controlling the precision of spike timing, and maintaining network oscillations, in a manner consistent with previous studies. The input-output model obtained from real data exhibits intriguing similarities with its synthetic-data counterpart, demonstrating the importance of a dynamic resonance in the system/model response around 2 Hz to 3 Hz. Using the input-output model from real data as a guide, we may be able to amend the parametric model by incorporating more mechanisms in order to yield better-matching input-output model. The approach we present can also be applied to the study of other neural systems and pathways.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Humanos , Inhibición Neural/fisiología , Dinámicas no Lineales , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Neural Comput ; 30(5): 1180-1208, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29566356

RESUMEN

Neurostimulation is a promising therapy for abating epileptic seizures. However, it is extremely difficult to identify optimal stimulation patterns experimentally. In this study, human recordings are used to develop a functional 24 neuron network statistical model of hippocampal connectivity and dynamics. Spontaneous seizure-like activity is induced in silico in this reconstructed neuronal network. The network is then used as a testbed to design and validate a wide range of neurostimulation patterns. Commonly used periodic trains were not able to permanently abate seizures at any frequency. A simulated annealing global optimization algorithm was then used to identify an optimal stimulation pattern, which successfully abated 92% of seizures. Finally, in a fully responsive, or closed-loop, neurostimulation paradigm, the optimal stimulation successfully prevented the network from entering the seizure state. We propose that the framework presented here for algorithmically identifying patient-specific neurostimulation patterns can greatly increase the efficacy of neurostimulation devices for seizures.


Asunto(s)
Encéfalo/fisiología , Terapia por Estimulación Eléctrica/métodos , Hipocampo/patología , Modelos Neurológicos , Convulsiones/patología , Convulsiones/terapia , Algoritmos , Simulación por Computador , Electroencefalografía , Hipocampo/fisiopatología , Humanos , Neuronas/fisiología , Dinámicas no Lineales , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología
4.
IEEE Trans Neural Netw Learn Syst ; 28(9): 2196-2208, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27352401

RESUMEN

In this paper, we have introduced a general modeling approach for dynamic nonlinear systems that utilizes a variant of the simulated annealing algorithm for training the Laguerre-Volterra network (LVN) to overcome the local minima and convergence problems and employs a pruning technique to achieve sparse LVN representations with l1 regularization. We tested this new approach with computer simulated systems and extended it to autoregressive sparse LVN (ASLVN) model structures that are suitable for input-output modeling of nonlinear systems that exhibit transitions in dynamic states, such as the Hodgkin-Huxley (H-H) equations of neuronal firing. Application of the proposed ASLVN to the H-H equations yields a more parsimonious input-output model with improved predictive capability that is amenable to more insightful physiological/biological interpretation.


Asunto(s)
Algoritmos , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas/fisiología , Dinámicas no Lineales , Potenciales de Acción/fisiología , Animales , Simulación por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA