Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Anesthesiol ; 24(1): 185, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789968

RESUMEN

BACKGROUND: Despite the implementation of various postoperative management strategies, the prevalence of postoperative fatigue syndrome (POFS) remains considerable among individuals undergoing laparoscopic radical gastrectomy. While the N-methyl-D-aspartic acid receptor antagonist esketamine has demonstrated efficacy in enhancing sleep quality and alleviating postoperative pain, its impact on POFS remains uncertain. Consequently, the objective of this study is to ascertain whether perioperative administration of esketamine can effectively mitigate the occurrence of POFS in patients undergoing laparoscopic radical gastrectomy. METHODS: A total of 133 patients diagnosed with gastric cancer were randomly assigned to two groups, namely the control group (Group C) (n = 66) and the esketamine group (Group E) (n = 67), using a double-blind method. The Group C received standardized anesthesia, while the Group E received esketamine in addition to the standardized anesthesia. The primary outcome measure assessed was the Christensen fatigue score at 3 days after the surgical procedure, while the secondary outcomes included the disparities in postoperative fatigue, postoperative pain, sleep quality, and adverse reactions between the two groups. RESULTS: In the group receiving esketamine, the fatigue scores of Christensen on the third day after surgery were significantly lower compared to the Group C (estimated difference, -0.70; 95% CI, -1.37 to -0.03; P = 0.040). Additionally, there was a significant decrease in the occurrence of fatigue in the Group E compared to the Group C on the first and third days following surgery (P < 0.05). Also, compared to individuals who had distal gastrectomy, those who had entire gastrectomy demonstrated a higher degree of postoperative tiredness reduction with esketamine. Furthermore, the Group E exhibited reduced postoperative pain and improved sleep in comparison to the Group C. Both groups experienced similar rates of adverse events. CONCLUSIONS: The use of esketamine during the perioperative period can improve POFS after laparoscopic radical gastrectomy, without adverse reactions. TRIAL REGISTRATION: Registered in the Chinese Clinical Trial Registry (ChiCTR2300072167) on 05/06 /2023.


Asunto(s)
Gastrectomía , Ketamina , Laparoscopía , Dolor Postoperatorio , Complicaciones Posoperatorias , Neoplasias Gástricas , Humanos , Ketamina/administración & dosificación , Ketamina/uso terapéutico , Neoplasias Gástricas/cirugía , Masculino , Femenino , Método Doble Ciego , Laparoscopía/métodos , Persona de Mediana Edad , Gastrectomía/métodos , Complicaciones Posoperatorias/prevención & control , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Fatiga/prevención & control , Anciano
2.
Mol Cancer ; 20(1): 49, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33673851

RESUMEN

Neural tumors can generally be divided into central nervous system tumors and peripheral nervous tumors. Because this type of tumor is located in the nerve, even benign tumors are often difficult to remove by surgery. In addition, the majority of neural tumors are malignant, and it is particular the same for the central nervous system tumors. Even treated with the means such as chemotherapy and radiotherapy, they are also difficult to completely cure. In recent years, an increasingly number of studies have focused on the use of mRNA to treat tumors, representing an emerging gene therapy. The use of mRNA can use the expression of some functional proteins for the treatment of genetic disorders or tissue repair, and it can also be applied to immunotherapy through the expression of antigens, antibodies or receptors. Therefore, although these therapies are not fully-fledged enough, they have a broad research prospect. In addition, there are many ways to treat tumors using mRNA vaccines and exosomes carrying mRNA, which have drawn much attention. In this study, we reviewed the current research on the role of mRNA in the development, diagnosis, treatment and prognosis of neural tumors, and examine the future research prospects of mRNA in neural tumors and the opportunities and challenges that will arise in the future application of clinical treatment.


Asunto(s)
Biomarcadores de Tumor , Transformación Celular Neoplásica/genética , Neoplasias del Sistema Nervioso/diagnóstico , Neoplasias del Sistema Nervioso/genética , Neoplasias del Sistema Nervioso/terapia , ARN Mensajero/genética , Animales , Vacunas contra el Cáncer , Transformación Celular Neoplásica/metabolismo , Terapia Combinada , Diagnóstico Diferencial , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Epigénesis Genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias del Sistema Nervioso/mortalidad , Especificidad de Órganos/genética , Pronóstico , Transporte de ARN , ARN Mensajero/inmunología , ARN Mensajero/metabolismo
3.
Langmuir ; 37(44): 13000-13011, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34723563

RESUMEN

Benefiting from the luxury functions of proteins, protein coatings have been extended to various applications, including tissue engineering scaffolds, drug delivery, antimicrobials, sensing and diagnostic equipment, food packaging, etc. Fast construction of protein coatings is always interesting to materials science and significant to industrialization. Here, we report a layer-by-layer (LbL) multilayer-constructed coating of tannic acid (TA) and lysozyme (Lyz), in which the secondary conformations of Lyz dominate the growth rate of the TA/Lyz coating. As well characterized by various techniques (quartz crystal microbalance with dissipation (QCM-D), circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), contact angle, etc.), TA-induced conformational transition of Lyz to α-helices occurs at pH 8 from other secondary structures (ß-sheets, ß-turns, and random coils), which leads to the very fast growth of TA/Lyz with a number of deposited bilayers, with thicknesses of more than 90 nm for six bilayers. In contrast to the leading conformation of α-helices at pH 8, Lyz displayed multiple conformations (α-helices, ß-sheets, ß-turns, and random coils) at pH 6, which resulted in coating thicknesses of less than 30 nm for six bilayers. By the addition of NaCl, Tween 20, and urea, we further confirmed that the secondary conformations of Lyz relied greatly on the interactions between TA and Lyz and dominated the growth rate of the multilayers. We believe that these findings will help to understand the transformation of secondary conformations by TA or other polyphenols and inspire a new route to quickly build protein coatings.


Asunto(s)
Tecnicas de Microbalanza del Cristal de Cuarzo , Taninos , Dicroismo Circular , Microscopía de Fuerza Atómica , Estructura Secundaria de Proteína
4.
Langmuir ; 37(12): 3637-3647, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33740370

RESUMEN

Wettability is a crucial characteristic of materials that plays a vital role in surface engineering. Surface modification is the key to changing the wettability of materials, and a simple and universal modification approach is being extensively pursued by researchers. Recently, metal-phenolic networks (MPNs) have been widely studied because they impart versatility and functionality in surface modification. However, an MPN is not stable for long periods, especially under acidic conditions, and is susceptible to pollution by invasive species. Spurred by the versatility of MPNs and various functionalities achieved by silanization, we introduce a general strategy to fabricate functionally stable coatings with controllable surface wettability by combining the two methods. The formation process of MPN and silane-MPN coatings was characterized by spectroscopic ellipsometry (SE), UV-visible-near-infrared (UV-vis-NIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), water contact angle (WCA), etc. We found that the stability of the MPN was greatly enhanced after silanization, which is attributed to the cross-linking effect that occurs between silane and the MPN, namely, the cross-linking protection produced in this case. Additionally, the wettability of an MPN can be easily changed through our strategy. We trust that our strategy can further extend the applications of MPNs and points toward potential prospects in surface modification.

5.
J Cell Physiol ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33090549

RESUMEN

Thymoquinone (TQ), the main active constituent of Nigella sativa seeds, has been shown to play a role in antioxidation, anti-inflammation, and antitumor. Recent studies have demonstrated that TQ contributes to the suppression of liver fibrosis. Abnormal activated epithelial-mesenchymal transition (EMT) promotes the activation of hepatic stellate cells (HSCs). However, whether the antifibrotic effects of TQ occur through inhibiting EMT is largely unknown. In this study, it was found that TQ ameliorated liver fibrosis and collagen accumulation in carbon tetrachloride (CCl4) mice. In vitro, TQ inhibited HSC activation including reduced proliferation, α-smooth muscle actin, and collagen. In addition, TQ markedly suppressed the EMT process, with enhanced E-cadherin and reduced desmin. Notably, snail family transcriptional repressor 1 (Snai1), the EMT master transcription factor, was obviously inhibited by TQ in vivo and in vitro. Further studies demonstrated that Snai1 was a target of microRNA-30a (miR-30a), which was upregulated by TQ. Interestingly, the effects of TQ on HSC activation and EMT were almost inhibited by miR-30a inhibitor. Collectively, we demonstrate that TQ inhibits HSC activation, at least in part, via regulation of miR-30a and Snai1. TQ upregulates miR-30a expression, resulting in a reduced Snai1 level as well as EMT process inactivation, which contributes to the inhibition of HSC activation. TQ may be a potential therapeutic agent for liver fibrosis.

6.
J Cell Physiol ; 235(3): 2792-2799, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31541462

RESUMEN

C-Jun N-terminal kinase (JNK) is a pivotal MAPK (mitogen-activated protein kinase), which activated by ischemia brain injury and plays a fairly crucial function in cerebral ischemic injury. Emerging studies demonstrated that JNK-IN-8 (a JNK inhibitor with high specificity) regulates traumatic brain injury through controlling neuronal apoptosis and inflammation. However, the function of JNK-IN-8 in ischemic stroke and the mechanisms underlying of JNK-IN-8 about neuroprotection are not well understood. In this work, male rats were treated with JNK-IN-8 after transient middle cerebral artery occlusion, and then the modified improved neurological function score (mNSS), the foot-fault test (FFT), interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) levels were assessed. We found that JNK-IN-8-treated rats with MCAO exerted an observable melioration in space learning as tested by the improved mNSS, and showed sensorimotor functional recovery as measured by the FFT. JNK-IN-8 also played anti-inflammatory roles as indicated through decreased activation of microglia and decreased IL-6, IL-1ß, and TNF-α expression. Furthermore, JNK-IN-8 suppressed the activation of JNK and nuclear factor-κB (NF-κB) signaling as indicated by the decreased level of phosphorylated-JNK and p65. All data demonstrate that JNK-IN-8 inhibits neuroinflammation and improved neurological function by inhibiting JNK/NF-κB and is a promising agent for the prevention of ischemic brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/patología , Células Cultivadas , Hipoxia-Isquemia Encefálica/patología , Inflamación/tratamiento farmacológico , Interleucina-1beta/análisis , Interleucina-6/análisis , Accidente Cerebrovascular Isquémico/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Aprendizaje/efectos de los fármacos , Masculino , Microglía/metabolismo , Arteria Cerebral Media/patología , Neuroprotección/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Corteza Sensoriomotora/efectos de los fármacos , Corteza Sensoriomotora/patología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/análisis
7.
Biochem Biophys Res Commun ; 529(4): 1025-1032, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819560

RESUMEN

Liver kinase B1 (LKB1), a tumour suppressor, participates in many cellular processes, including cell survival, growth, apoptosis, transformation, and metabolism. Upon performing yeast two-hybrid screening, co-immunoprecipitation, and GST pull-down, we identified that BRCA1-associated protein 1 (BAP1), a deubiquitinase, interacts with LKB1. Immunoblotting was performed to examine the effect of BAP1 on the activation of 5' AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), downstream of LKB1. The relationship between BAP1 deficiency and cancer cell proliferation was examined using cell survival assay and soft agar assay. qRT-PCR and oil red O staining were performed to evaluate lipid synthesis. Our findings reveal that BAP1 deubiquitinates LKB1, inhibits its degradation, and stabilises it, thereby affecting AMPK activation and downstream mTOR activity. BAP1 deficiency may enhance cellular proliferation as well as lipid synthesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Humanos , Lípidos/biosíntesis , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Estabilidad Proteica , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Ubiquitina Tiolesterasa/deficiencia
8.
Biochem Biophys Res Commun ; 529(1): 43-50, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32560817

RESUMEN

Neuroblastoma (NB) is a paediatric tumour that shows great biomolecule and clinical heterogeneity, and patients with NB often develop various neurological complications. Currently, the disease is mainly treated by surgery and still lacks specific therapeutic drugs; therefore, targets are urgently needed. Makorin ring finger protein 2 (MKRN2) is an E3 ligase whose effects on neuroblastoma have not been illustrated. shRNAs for MKRN2 have been designed, and MKRN2-knockdown human neuroblastoma SHSY5Y cells were established. MKRN2 knockdown promotes the proliferation and migration of SHSY5Y cells. Because MKRN2 is an E3 ligase, we performed a series of experiments, and Insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) was identified as a new substrate for MKRN2. IGF2BP3 is an RNA-binding protein that regulates the stability of many mRNAs, including CD44 and PDPN, and our study demonstrated that MKRN2 regulates the expression of CD44 and PDPN in an IGF2BP3-dependent manner. These results suggest that MKRN2 might be a potential therapeutic target for neuroblastoma.


Asunto(s)
Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Receptores de Hialuranos/genética , Técnicas In Vitro , Glicoproteínas de Membrana/genética , Neuroblastoma/genética , Estabilidad del ARN , ARN Interferente Pequeño/genética , Ribonucleoproteínas/antagonistas & inhibidores , Ribonucleoproteínas/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Mediators Inflamm ; 2015: 601083, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26273138

RESUMEN

OBJECTIVE: Our present study tested whether flurbiprofen axetil could reduce perioperative sufentanil consumption and provide postoperative analgesia with decrease in emergency agitation and systemic proinflammatory cytokines release. METHODS: Ninety patients undergoing tangential excision surgery were randomly assigned to three groups: (1) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 µg/kg sufentanil and 10 mL placebo by patient-controlled analgesia (PCA) pump, (2) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 µg/kg sufentanil and 100 mg flurbiprofen axetil by PCA pump, and (3) 10 mL placebo and a postoperative dose of 2 µg/kg sufentanil and 10 mL placebo by PCA pump. RESULTS: Preoperative administration of flurbiprofen axetil decreased postoperative tramadol consumption and the visual analog scale at 4, 6, 12, and 24 h after surgery, which were further decreased by postoperative administration of flurbiprofen axetil. Furthermore, flurbiprofen axetil attenuated emergency agitation score and Ramsay score at 0, 5, and 10 min after extubation and reduced the TNF-α and interleukin- (IL-) 6 levels at 24 and 48 h after the operation. CONCLUSION: Flurbiprofen axetil enhances analgesic effects of sufentanil and attenuates emergence agitation and systemic proinflammation in patients undergoing tangential excision surgery.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Flurbiprofeno/análogos & derivados , Sufentanilo/uso terapéutico , Adulto , Método Doble Ciego , Femenino , Flurbiprofeno/uso terapéutico , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Periodo Posoperatorio , Factor de Necrosis Tumoral alfa/sangre
10.
Adv Mater ; 36(18): e2308728, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241751

RESUMEN

Manipulation of the gut microbiota using oral microecological preparations has shown great promise in treating various inflammatory disorders. However, delivering these preparations while maintaining their disease-site specificity, stability, and therapeutic efficacy is highly challenging due to the dynamic changes associated with pathological microenvironments in the gastrointestinal tract. Herein, a superior armored probiotic with an inflammation-targeting capacity is developed to enhance the efficacy and timely action of bacterial therapy against inflammatory bowel disease (IBD). The coating strategy exhibits suitability for diverse probiotic strains and has negligible influence on bacterial viability. This study demonstrates that these armored probiotics have ultraresistance to extreme intraluminal conditions and stable mucoadhesive capacity. Notably, the HA-functionalized nanoarmor equips the probiotics with inflamed-site targetability through multiple interactions, thus enhancing their efficacy in IBD therapy. Moreover, timely "awakening" of ingested probiotics through the responsive transferrin-directed degradation of the nanoarmor at the site of inflammation is highly beneficial for bacterial therapy, which requires the bacterial cells to be fully functional. Given its easy preparation and favorable biocompatibility, the developed single-cell coating approach provides an effective strategy for the advanced delivery of probiotics for biomedical applications at the cellular level.


Asunto(s)
Inflamación , Probióticos , Animales , Ratones , Humanos , Enfermedades Inflamatorias del Intestino/terapia , Nanopartículas/química , Transferrina/química , Transferrina/metabolismo , Microbioma Gastrointestinal
11.
Brain Res ; 1833: 148867, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38499234

RESUMEN

The rate of early neurological deterioration (END) differs in different subtypes of ischaemic stroke. Previous studies showed PLCL2 gene is a novel susceptibility locus for the occurrence of atherosclerosis and thrombotic events. The objective of this research is to examine the efficacy that PLCL2 may have on the risk of END in large artery atherosclerotic (LAA) stroke. Tagged single nucleotide polymorphisms (SNPs) were identified by a strategy of fine-mapping. The genotyping of the selected SNPs was performed by SNPscan. The impact of PLCL2 on indicating the susceptibility of END in LAA patients was evaluated by binary logistic regression. The SNP-SNP interactions of PLCL2 for END was assessed by generalized multifactor dimensionality reduction (GMDR). A total of 1527 LAA stroke patients were recruited, 582 patients (38 %) experienced END. Compared to participants without END, participants experienced END were much older (P = 0.018), more likely to suffer pre-existing diabetes mellitus (P = 0.036), higher frequent in active tobacco users (P = 0.022) and had much higher median NIHSS on admission (P < 0.001). Rs4685423 was identified to be a predictor to the risk of END: the frequency of END in AA genotype patients is lower than that in AC or CC genotype patients (multivariate-adjusted, OR 0.63; 95 % CI 0.49-0.80; P < 0.001). The SNP-SNP interactions analysis indicates rs4685423 has the greatest impacton the risk of END for LAA patients. The time from admission diagnosis to END onset in AA genotype patients is much later than that in CA or CC genotype patients (log-rank, P = 0.005). In summary, the PLCL2 rs4685423 SNP is probably associated with the END risk in LAA stroke patients.


Asunto(s)
Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Polimorfismo de Nucleótido Simple/genética , Anciano , Persona de Mediana Edad , Accidente Cerebrovascular/genética , Predisposición Genética a la Enfermedad/genética , Aterosclerosis/genética , Cromosomas Humanos Par 3/genética , Factores de Riesgo , Genotipo , Arteriosclerosis Intracraneal/genética
12.
Eur J Pharmacol ; 977: 176725, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38851563

RESUMEN

Receptor tyrosine kinases (RTKs) are cell surface receptors with kinase activity that play a crucial role in diverse cellular processes. Among the RTK family members, Human epidermal growth factor receptor 2 (HER2) and HER3 are particularly relevant to breast cancer. The review delves into the complexities of receptor tyrosine kinase interactions, resistance mechanisms, and the potential of anti-HER3 drugs, offering valuable insights into the clinical implications and future directions in this field of study. It assesses the potential of anti-HER3 drugs, such as pertuzumab, in overcoming resistance observed in HER2-positive breast cancer therapies. The review also explores the resistance mechanisms associated with various drugs, including trastuzumab, lapatinib, and PI3K inhibitors, providing insights into the intricate molecular processes underlying resistance development. The review concludes by emphasizing the necessity for further clinical trials to assess the efficacy of HER3 inhibitors and the potential of developing safe and effective anti-HER3 treatments to improve treatment outcomes for patients with HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Receptor ErbB-2 , Receptor ErbB-3 , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Femenino , Animales , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología
13.
ACS Macro Lett ; 13(1): 58-64, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38153092

RESUMEN

The development of drug delivery systems with real-time cargo release monitoring capabilities is imperative for optimizing nanomedicine performance. Herein, we report an innovative self-reporting drug delivery platform based on a ROS-responsive random copolymer (P1) capable of visualizing cargo release kinetics via the activation of an integrated fluorophore. P1 was synthesized by copolymerization of pinacol boronate, PEG, and naphthalimide monomers to impart ROS-sensitivity, hydrophilicity, and fluorescence signaling, respectively. Detailed characterization verified that P1 self-assembles into 11 nm micelles with 10 µg mL-1 CMC and can encapsulate hydrophobic curcumin with 79% efficiency. Fluorescence assays demonstrated H2O2-triggered disassembly and curcumin release with concurrent polymer fluorescence turn-on. Both in vitro and in vivo studies validated the real-time visualization of drug release and ROS scavenging, as well as the therapeutic effect on osteoarthritis (OA). Overall, this nanotheranostic polymeric micelle system enables quantitative monitoring of drug release kinetics for enhanced treatment optimization across oxidative stress-related diseases.


Asunto(s)
Curcumina , Osteoartritis , Humanos , Polímeros , Especies Reactivas de Oxígeno , Curcumina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Autoinforme , Peróxido de Hidrógeno , Sistemas de Liberación de Medicamentos , Micelas , Osteoartritis/tratamiento farmacológico
14.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672345

RESUMEN

Glioma refers to a tumor that is derived from brain glial stem cells or progenitor cells and is the most common primary intracranial tumor. Due to its complex cellular components, as well as the aggressiveness and specificity of the pathogenic site of glioma, most patients with malignant glioma have poor prognoses following surgeries, radiotherapies, and chemotherapies. In recent years, an increasing amount of research has focused on the use of CRISPR/Cas9 gene-editing technology in the treatment of glioma. As an emerging gene-editing technology, CRISPR/Cas9 utilizes the expression of certain functional proteins to repair tissues or treat gene-deficient diseases and could be applied to immunotherapies through the expression of antigens, antibodies, or receptors. In addition, some research also utilized CRISPR/Cas9 to establish tumor models so as to study tumor pathogenesis and screen tumor prognostic targets. This paper mainly discusses the roles of CRISPR/Cas9 in the treatment of glioma patients, the exploration of the pathogenesis of neuroglioma, and the screening targets for clinical prognosis. This paper also raises the future research prospects of CRISPR/Cas9 in glioma, as well as the opportunities and challenges that it will face in clinical treatment in the future.

15.
FEBS Open Bio ; 13(9): 1756-1771, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454373

RESUMEN

Lung cancer is a leading cause of mortality worldwide and shows substantial clinical and biomolecular heterogeneity. Currently, specific therapeutic strategies are lacking, so effective drug targets are urgently needed. E6AP/UBE3A is a multifaceted ubiquitin ligase that controls various signaling pathways implicated in neurological diseases and various cancers; however, its role in lung cancer is incompletely understood. Here, MCM6 was identified as an interacting partner of E6AP using the yeast two-hybrid assay. MCM2 and MCM4 were then shown to interact with E6AP. E6AP knockout enhanced the ubiquitination of MCM2/4/6, suggesting that E6AP was not the E3 ubiquitin ligase for these three MCM proteins. Ablation of E6AP inhibited proliferation and migration, but had no significant effect on apoptosis in A549 and H1975 cells, and proliferation and migration inhibition was also observed in MCM6 knockdown cells. Furthermore, ablation of MCM6 and E6AP synergistically suppressed the proliferation and migration of A549 and H1975 cells. To verify the above findings in vivo, we established tumor models in nude mice and identified that the tumorigenicity of human lung adenocarcinoma (LUAD) cells was synergistically regulated by MCM6 and E6AP. Moreover, the expression levels of MCM6 and E6AP were higher in LUAD tissues than in adjacent tissues. Furthermore, the expression levels of MCM6 and E6AP were positively correlated in human LUAD samples. Thus, our study suggests that the interaction of E6AP and MCM proteins plays an important role in the progression of LUAD, which might offer potential therapeutic targets for cancer treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Ratones , Animales , Humanos , Ratones Desnudos , Ubiquitinación , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/metabolismo , Proliferación Celular/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Componente 6 del Complejo de Mantenimiento de Minicromosoma/metabolismo
16.
Dis Markers ; 2022: 8787782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692882

RESUMEN

Background: Myopathies related to Ryanodine receptor 1 (RYR1) mutation are the most common nondystrophy muscle disorder in humans. Early detection and diagnosis of RYR1 mutation-associated myopathies may lead to more timely treatment of patients, which contributes to the management and preparation for malignant hyperthermia. However, diagnosis of RYR1 mutation-associated myopathies is delayed and challenging. The absence of diagnostic morphological features in muscle biopsy does not rule out the possibility of pathogenic variations in RYR1. Accordingly, it is helpful to seek biomarkers to diagnose RYR1 mutation-associated myopathies. Methods: Skeletal muscle tissue microarray datasets of RYR1 mutation-associated myopathies or healthy persons were built in accordance with the gene expression synthesis (GEO) database. Differentially expressed genes (DEGs) were identified on the basis of R software. Genes specific to tissue/organ were identified through BioGPS. An enrichment analysis of DEGs was conducted in accordance with the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We also built protein-protein interaction (PPI) networks to explore the function and enrichment pathway of DEGs and the identification of hub genes. Lastly, the ROC curve was drawn for hub genes achieving specific expressions within skeletal muscle. Moreover, the area under the curve (AUC) was obtained to calculate the predictive value of key genes. The transcription factors of hub genes achieving specific expressions within skeletal muscle were predicted with the use of the iRegulon plugin. Results: We identified 170 DEGs among 11 muscle biopsy samples of healthy subjects and 17 muscle biopsy samples of RYR1 mutation-associated myopathy patients in the dataset. Among the above DEGs, 30 genes achieving specific expressions within tissues/organs were found. GO and KEGG enrichment analysis of DEGs mainly focused on muscle contraction, actin-mediated cell contraction, actin filament-based movement, and muscular sliding. 12 hub genes were identified with the use of Cytoscape. Four hub genes were specifically expressed in skeletal muscle tissue, including MYH1 (AUC: 0.856), TNNT3 (AUC: 0.840), MYLPF (AUC: 0.786), and ATP2A1 (AUC: 0.765). The iRegulon predicted results suggested that the transcription factor MYF6 was found with the highest reliability. Conclusions: Four skeletal muscle tissue-specific genes were identified, including MYH1, TNNT3, MYLPF, and ATP2A1, as the potential biomarkers for diagnosing and treating RYR1 mutation-associated myopathies, which provided insights into the transcriptome-level development mechanism. The transcription factor MYF6 may be a vital upstream regulator of the above biomarkers.


Asunto(s)
Biología Computacional , Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina/genética , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Mutación , Reproducibilidad de los Resultados , Factores de Transcripción/genética
17.
J Inflamm Res ; 15: 4963-4979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105385

RESUMEN

Purpose: Sepsis, which is deemed as a systemic inflammation reaction syndrome in the face of infectious stimuli, is the primary cause of death in ICUs. Sepsis-induced cardiomyopathy (SIC) may derive from systemic inflammation reaction and oxidative stress. Retinoic acid (RA) is recognized by its beneficial roles in terms of the immunoresponse to infections and antioxygen actions. However, the treatment efficacy and potential causal links of RA in SIC are still elusive. Methods: By virtue of the STITCH database, we identified the targets of RA. Differentially expressed genes in SIC were acquired from the GEO database. The PPI network of intersected targets was established. GO and KEGG pathway enrichment analysis was completed. Hub genes were analyzed by cytoHubba plug-in. In the process of experimental validation, a mouse sepsis model was established by lipopolysaccharide (LPS), and the treated mice were intraperitoneally injected with RA or Dexamethasone (DEX) 60 min prior to LPS injections. Survival conditions, cardiac functions and antioxidant levels of the mice were assessed. Cardiac inflammation and injury were detected by HE and TUNEL. The levels of key genes and signal pathway expression were analyzed by RT-PCR and Western blot. Results: PPARA, ITGAM, VCAM-1, IGF-1 and IL-6 were identified as key therapeutic targets of RA by network pharmacology. PI3K-Akt signaling pathway is the main regulatory pathway of RA. In vivo researches unraveled that RA can improve the survival rate and cardiac function of LPS-treated mice, inhibit inflammatory factors and myocardial injury, and regulate the expression of key therapeutic targets and key pathways, which is PI3K-Akt signaling pathway. Conclusion: Network pharmacological method offers a predicative strategy to explore the treatment efficacy and causal links of RA in endotoxemic myocarditis. Through experimental verification, we discover that RA can reduce lipopolysaccharide-induced cardiac dysfunction by regulating the PI3K-Akt signaling pathway and key genes.

18.
Dis Markers ; 2022: 1292648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408463

RESUMEN

Introduction: The global incidence of brain tumors, the most common of which is lower grade glioma (LGG), remains high. Pleckstrin homology domain-containing family A member 4 (PLEKHA4) has been reported to be related to tumor invasion and growth. However, its role and correlation with immunity in LGG remain elusive. Methods: We evaluated the expression pattern, prognostic value, biological functions, and immune effects of PLEKHA4 in LGG. We also analyzed the association between PLEKHA4 levels in different tumors, patient prognosis, and its role in tumor immunity. Depending on the type of research data, we used statistical methods such as Student's t-tests, Mann-Whitney U tests one-way ANOVA tests Kruskal-Wallis tests Pearson's or Spearman's correlation analysis Chi-square and Fisher's exact tests in this paper. Results and Conclusions. The results revealed that PLEKHA4 levels were markedly elevated in most tumors (such as LGG). High PLEKHA4 levels are associated with poor overall survival (OS), progression-free interval (PFI) rates, and disease-specific survival (DSS) in LGG patients. Cox regression analysis and nomograms showed that PLEKHA4 levels are independent prognostic factors for LGG patients. According to functional enrichment analysis, PLEKHA4 levels in LGG are associated with immune infiltration and immunotherapy. In conclusion, PLEKHA4 is a potential prognostic marker and immunotherapy target for LGG.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Pronóstico , Dominios Homólogos a Pleckstrina , Glioma/patología , Neoplasias Encefálicas/metabolismo , Análisis de Regresión
19.
Front Cell Infect Microbiol ; 12: 910760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483455

RESUMEN

Background: This study aimed to assess whether the amylase day 2/amylase day 1 ratio was associated with severe acute pancreatitis (SAP). Methods: We retrospectively enrolled 464 patients with acute pancreatitis. Serum amylase was measured on admission (day 1) and 24 h later (day 2). Univariable logistic regression with restricted cubic spline analysis, multivariable logistic analysis, and receiver operating characteristic curve analysis was used to evaluate the relationship between the amylase day 2/amylase day 1 ratio and SAP. Results: A non-linear association between the amylase day 2/amylase day 1 ratio and SAP was observed. The multivariable logistic analysis confirmed that a high amylase day 2/amylase day 1 ratio (≥0.3) was independently associated with the development of SAP (OR: 6.62). The area under the receiver operating characteristic curve (AUC) of the amylase day 2/amylase day 1 ratio, as a predictive factor for SAP, was 0.65. When amylase ratio ≥0.3 was counted as 1 point and added to the BISAP score to build a new model named the BISAPA (BISAP plus Amylase ratio) score (AUC = 0.86), it improved the diagnostic power of the original BISAP score (AUC = 0.83) for SAP. With a cut-off value of 3, the BISAPA score achieved a sensitivity of 66.0%, a specificity of 86.7%, and diagnostic accuracy of 84.48%. Conclusions: There is a non-linear correlation between the amylase day 2/amylase day 1 ratio and the incidence of SAP. BISAPA score might also be a useful tool for the same purpose.


Asunto(s)
Amilasas , Pancreatitis , Humanos , Pancreatitis/diagnóstico , Pancreatitis/epidemiología , Enfermedad Aguda , Estudios Retrospectivos
20.
Zhonghua Yi Xue Za Zhi ; 91(5): 345-9, 2011 Feb 01.
Artículo en Zh | MEDLINE | ID: mdl-21419013

RESUMEN

OBJECTIVE: To investigate the effects of nimodipine on symptomatic cerebral vasospasm in rabbits. METHODS: Twenty four japanese white rabbits which ligation of bilateral common carotid arteries and no neurological deficits were randomized to sham-operation, subarachnoid hemorrhage (SAH) and nimodipine which injected of nimodipine 0.1 mg/kg, continuous vein administration 5 day. The behavior scores, neurological scores were observed everyday and cerebral angiography changes were measured twice by 3D-CTA, and basilar artery was removed for pathological examination after last CTA examination. RESULTS: In SAH group, The basilar artery were significantly vasoconstrictive on 5 days, neurological scores were increased, and the basilar artery was found apoptosis-like changes under light microscopic and electron microscope. Nimodipine group could not dilated the basilar artery arteriospasm after SAH, but it could attenuate neurological deficit, and obviously alleviate the pathological changes of basilar artery. CONCLUSION: Nimodipine could not vasodilation of basilar artery in SCVS, but obviously could alleviate neurological changes and pathological changes of basilar artery in rabbits with symptomatic cerebral vasospasm.


Asunto(s)
Nimodipina/uso terapéutico , Vasodilatadores/uso terapéutico , Vasoespasmo Intracraneal/prevención & control , Animales , Arteria Basilar/efectos de los fármacos , Modelos Animales de Enfermedad , Nimodipina/farmacología , Conejos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA