Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zookeys ; 1190: 75-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38298405

RESUMEN

Guigarracailaoensis is a member of family Cyprinidae, subfamily Labeoninae (Cypriniformes) which was recently discovered in southwestern China. Following its initial description, additional information on this species has remained notably scarce. In the current study, we assemble the complete mitochondrial genome (mitogenome) of G.cailaoensis using the Illumina sequencing platform. The mitogenome is identified as a circular, double-stranded DNA sequence of 16,593 base pairs, encompassing 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and a putative control region. Maximum-likelihood and Bayesian-inference approaches were used to construct phylogenetic trees for three datasets: (i) PCG sequences of the complete mitogenome (dataset 1); (ii) PCG sequences of the complete mitogenome combined with nuclear DNA (ncDNA) (Rag1) sequence (dataset 2); and (iii) ncDNA (Rag1) sequences (dataset 3). Phylogenetic analyses position G.cailaoensis as a sister taxon to the lineage consisting of Paraqianlabeolineatus Zhao, Sullivan, Zhang & Peng, 2014 and Pseudogyrinocheilusprochilus Fang, 1933 in dataset 1, and to Pseudogyrinocheilusprochilus in dataset 2, species lacking an oral disc on the lower lip. However, G.cailaoensis showed a close relationship to the lineage consisting of Discogobio and Discocheilus in dataset 3, species possessing an oral disc on the lower lip. Nonetheless, a variety of species with an oral disc on the lower lip are clustered into different lineages across the three datasets that may indicate that the development of the oral disc is homoplastic within the subfamily Labeoninae. The outcomes of this study have the potential to support conservation efforts for this species and to enrich our understanding of genetic resources in the area.

2.
Genes (Basel) ; 15(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39062656

RESUMEN

This study sequenced the complete chloroplast genomes of Stephania japonica var. timoriensis and Stephania japonica var. discolor using the Illumina NovaSeq and PacBio RSII platforms. Following sequencing, the genomes were assembled, annotated, comparatively analyzed, and used to construct a phylogenetic tree to explore their phylogenetic positions. Results indicated that the chloroplast genomes of S. japonica var. timoriensis and S. japonica var. discolor both displayed a typical double-stranded circular tetrameric structure, measuring 157,609 and 157,748 bp in length, respectively. Each genome contained 130 annotated genes, with similar total GC content and relative codon usage patterns, showing a distinct preference for A/U at the third codon position. Simple sequence repeat analysis identified 207 and 211 repeats in S. japonica var. timoriensis and S. japonica var. discolor, respectively, primarily the A/T type. Boundary condition analysis indicated no significant expansion or contraction in the inverted repeat regions with consistent gene types and locations across both varieties. Nucleotide polymorphism analysis highlighted greater variation in the intergenic regions than in the coding sequences of Stephania chloroplast genomes. Phylogenetic analyses demonstrated that the species Stephania clustered into a distinct, well-supported clade. Notably, Stephania japonica, along with S. japonica var. discolor and S. japonica var. timoriensis, established a monophyletic lineage. Within this lineage, S. japonica and S. japonica var. discolor were closely related, with S. japonica var. timoriensis serving as their sister taxon.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Uso de Codones , Composición de Base , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA