Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(17): e0099522, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997493

RESUMEN

Mushroom-forming fungi (Agaricomycetes) employ enzymatic and nonenzymatic cellulose degradation mechanisms, the latter presumably relying on Fenton-generated radicals. The effects of the two mechanisms on the cellulose microfibrils structure remain poorly understood. We examined cellulose degradation caused by litter decomposers and wood decomposers, including brown-rot and white-rot fungi and one fungus with uncertain wood decay type, by combining small- and wide-angle X-ray scattering. We also examined the effects of commercial enzymes and Fenton-generated radicals on cellulose using the same method. We detected two main degradation or modification mechanisms. The first characterized the mechanism used by most fungi and resembled enzymatic cellulose degradation, causing simultaneous microfibril thinning and decreased crystalline cellulose. The second mechanism was detected in one brown-rot fungus and one litter decomposer and was characterized by patchy amorphogenesis of crystalline cellulose without substantial thinning of the fibers. This pattern did not resemble the effect of Fenton-generated radicals, suggesting a more complex mechanism is involved in the destruction of cellulose crystallinity by fungi. Furthermore, our results showed a mismatch between decay classifications and cellulose degradation patterns and that even within litter decomposers two degradation mechanisms were found, suggesting higher functional diversity under current ecological classifications of fungi. IMPORTANCE Cellulose degradation by fungi plays a fundamental role in terrestrial carbon cycling, but the mechanisms by which fungi cope with the crystallinity of cellulose are not fully understood. We used X-ray scattering to analyze how fungi, a commercial enzyme mix, and a Fenton reaction-generated radical alter the crystalline structure of cellulose. Our data revealed two mechanisms involved in crystalline cellulose degradation by fungi: one that results in the thinning of the cellulose fibers, resembling the enzymatic degradation of cellulose, and one that involves amorphogenesis of crystalline cellulose by yet-unknown pathways, resulting in a patchy-like degradation pattern. These results pave the way to a deeper understanding of cellulose degradation and the development of novel ways to utilize crystalline cellulose.


Asunto(s)
Agaricales , Basidiomycota , Agaricales/metabolismo , Basidiomycota/metabolismo , Celulosa/metabolismo , Hongos/metabolismo , Lignina/metabolismo , Microfibrillas/metabolismo , Madera/microbiología , Rayos X
2.
J Transl Med ; 18(1): 189, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375888

RESUMEN

BACKGROUND: The protective role of high HDL cholesterol levels against cardiovascular diseases has been recently questioned. Limited data are available on this specific topic in patients with type 2 diabetes mellitus (T2DM). We aimed to evaluate the association of HDL cholesterol concentrations with all-cause and cause-specific mortality in a historical cohort of T2DM patients with 14 years of follow-up. METHODS: This is a retrospective population-based cohort study involving 2113 T2DM patients attending the Diabetic Clinic of Asti. Survival analyses were performed to assess hazard ratios for overall and specific-cause mortality by HDL cholesterol tertiles, using the middle HDL cholesterol tertile as a reference. RESULTS: The mean age was 66 ± 11 years; 51.4% of patients had low HDL-cholesterol levels. After a 14-year follow-up, 973/2112 patients had died (46.1%). The HDL cholesterol tertile cut-off points were 37.5 and 47.5 mg/dL (males) and 41.5 and 52.0 mg/dL (females). No associations between lower and upper HDL cholesterol tertiles respectively and all-cause (HR = 1.12; 95% CI 0.96-1.32; HR = 1.11; 0.95-1.30), cardiovascular (HR = 0.97; 0.77-1.23; HR = 0.94; 0.75-1.18) or cancer (HR = 0.92; 0.67-1.25; HR = 0.89; 0.66-1.21) mortality were found. A significantly increased risk for infectious disease death was found both in the lower (HR = 2.62; 1.44-4.74) and the upper HDL-cholesterol tertiles (HR = 2.05; 1.09-3.85) when compared to the reference. Individuals in the upper tertile showed an increased risk for mortality due to diabetes-related causes (HR = 1.87; 1.10-3.15). CONCLUSIONS: Our results corroborate the hypothesis that HDL cholesterol levels are nonprotective in T2DM patients. The U-shaped association between HDL-cholesterol levels and mortality associated with infectious diseases should be verified by further studies.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Anciano , Causas de Muerte , HDL-Colesterol , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo
3.
Soft Matter ; 16(11): 2642-2651, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32119019

RESUMEN

We report here on a peptide hydrogel system, which in contrast to most other such systems, is made up of relatively short fibrillar aggregates, discussing resemblance with colloidal rods. The synthetic model peptides A8K and A10K, where A denotes alanine and K lysine, self-assemble in aqueous solutions into ribbon-like aggregates having an average length 〈L〉 on the order of 100 nm and with a diameter d≈ 6 nm. The aggregates can be seen as weakly charged rigid rods and they undergo an isotropic to nematic phase transition at higher concentrations. Translational motion perpendicular to the rod axis gets strongly hindered when the concentration is increased above the overlap concentration. Similarly, the rotational motion is hindered, leading to very long stress relaxation times. The peptide self-assembly is driven by hydrophobic interactions and due to a net peptide charge the system is colloidally stable. However, at the same time short range, presumably hydrophobic, attractive interactions appear to affect the rheology of the system. Upon screening the long range electrostatic repulsion, with the addition of salt, the hydrophobic attraction becomes more dominant and we observe a transition from a repulsive glassy state to an attractive gel-state of the rod-like peptide aggregates.


Asunto(s)
Hidrogeles/química , Péptidos/química , Termodinámica , Agua/química , Alanina/química , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/química , Modelos Biológicos , Reología
4.
Langmuir ; 35(11): 3999-4010, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30789270

RESUMEN

Poly(ethylene glycol) (PEG) polymers and PEG-conjugated lipids are widely used in bioengineering and drug transport applications. A PEG layer in a drug carrier increases hydrophilic repulsion, inhibits membrane fusion and serum opsonin interactions, and prolongs the storage and circulation time. It can also change the carrier shape and have an influence on many properties related to the content release of the carrier. In this paper, we focus on the physicochemical effects of PEGylation in the lipid bilayer. We introduce laurdanC as a fluorophore for shape recognition and phase transition detection. Together with laurdanC, cryogenic transmission electron microscopy, differential scanning calorimetry, molecular dynamics simulations, and small-angle X-ray scattering/wide-angle X-ray scattering, we acquire information of the particle/bilayer morphology and phase behavior in systems containing 1,2-dipalmitoyl- sn-glycero-3-phosphocholine:1,2-distearoyl- sn-glycero-3-phosphoethanolamine-PEG(2000) with different fractions. We find that PEGylation leads to two important and potentially usable features of the system. (1) Spherical vesicles present a window of elevated chain-melting temperatures and (2) lipid packing shape-controlled liposome-to-bicelle transition. The first finding is significant for targets requiring multiple release sequences and the second enables tuning the release by composition and the PEG polymer length. Besides drug delivery systems, the findings can be used in other smart soft materials with trigger-polymers as well.

5.
Langmuir ; 34(28): 8314-8325, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29924625

RESUMEN

The formation of multilamellar vesicles (MLVs) in the lyotropic lamellar phase of the system triethylene glycol mono n-decyl ether (C10E3)/water is investigated under large amplitude oscillatory shear (LAOS) using spatially resolved rheo-NMR spectroscopy and a combination of rheo-small angle light scattering (rheo-SALS) and conventional rheology. Recent advances in rheo-NMR hardware development facilitated the application of LAOS deformations in high-field NMR magnets. For the range of investigated strain amplitudes (10-50) and frequencies (1 and 2 rad s-1), MLV formation is observed in all NMR and most SALS experiments. It is found that the MLV size depends on the applied frequency in contrast to previous steady shear experiments where the shear rate is the controlling parameter. The onset of MLV formation, however, is found to vary with the shear amplitude. The LAOS measurements bear no indication of the intermediate structures resembling aligned multilamellar cylinders observed in steady shear experiments. Lissajous curves of stress vs strain reveal a transition from a viscoelastic solid material to a pseudoplastic material.

6.
J Phys Chem A ; 122(38): 7730-7738, 2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30165023

RESUMEN

Ferrihydrite (Fh) nanoparticles are omnipresent in nature and often highly mobile because of their colloidal stability. Thus, Fh serves as a vector for iron as well as associated nutrients and contaminants. Here, we demonstrate, using small-angle X-ray scattering combined with cryo-transmission electron microscopy (cryo-TEM), that dissolved organic matter (DOM), extracted from a boreal forest soil, induce aggregation of Fh nanoparticles, of radius 3 nm, into fractal aggregates, having a fractal dimension D = 1.7. The DOM consists of both fractal-like colloids (>100 nm) and small molecular DOM, but the attractive Fh interparticle interaction was mediated by molecular DOM alone as shown by cryo-TEM. This highlights the importance of using soil extracts, including all size fractions, in studies of the colloidal behavior of DOM-mineral aggregates. The Fh nanoparticles also self-assemble during synthesis into aggregates with the same fractal dimension as the DOM-Fh aggregates. We propose that, in both the absence and presence of DOM, the aggregation is controlled by the Fh particle charge, and the process can be viewed as a linear polymerization into a self-avoiding random walk structure. The theoretical D value for this is 5/3, which is in close agreement with our Fh and DOM-Fh results.

7.
Int J Mol Sci ; 19(10)2018 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-30249049

RESUMEN

Numerous bioactive biophenol secoiridoids (BPsecos) are found in the fruit, leaves, and oil of olives. These BPsecos play important roles in both the taste of food and human health. The main BPseco bioactive from green olive fruits, leaves, and table olives is oleuropein, while olive oil is rich in oleuropein downstream pathway molecules. The aim of this study was to probe olive BPseco downstream molecular pathways that are alike in biological and olive processing systems at different pHs and reaction times. The downstream molecular pathway were analyzed by high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI/MS) and typed neglected of different overlap (TNDO) computational methods. Our study showed oleuropein highest occupied molecular orbital (HOMO) and HOMO-1 triggered the free radical processes, while HOMO-2 and lowest unoccupied molecular orbital (LUMO) were polar reactions of glucoside and ester groups. Olive BPsecos were found to be stable under acid and base catalylic experiments. Oleuropein aglycone opened to diales and rearranged to hydroxytyrosil-elenolate under strong reaction conditions. The results suggest that competition among olive BPseco HOMOs could induce glucoside hydrolysis during olive milling due to native olive ß-glucosidases. The underlined olive BPsecos downstream molecular mechanism herein could provide new insights into the olive milling process to improve BPseco bioactives in olive oil and table olives, which would enhance both the functional food and the nutraceuticals that are produced from olives.


Asunto(s)
Manipulación de Alimentos/métodos , Glucósidos/metabolismo , Iridoides/química , Iridoides/metabolismo , Olea/química , Humanos
8.
Int J Mol Sci ; 18(5)2017 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-28481240

RESUMEN

Olive oil and table olives are rich sources of biophenols, which provides a unique taste, aroma and potential health benefits. Specifically, green olive drupes are enriched with oleuropein, a bioactive biophenol secoiridoid. Olive oil contains hydrolytic derivatives such as hydroxytyrosol, oleacein and elenolate from oleuropein as well as tyrosol and oleocanthal from ligstroside. Biophenol secoiridoids are categorized by the presence of elenoic acid or its derivatives in their molecular structure. Medical studies suggest that olive biophenol secoiridoids could prevent cancer, obesity, osteoporosis, and neurodegeneration. Therefore, understanding the biomolecular dynamics of oleuropein can potentially improve olive-based functional foods and nutraceuticals. This review provides a critical assessment of oleuropein biomolecular mechanism and computational mapping that could contribute to nutrigenomics.


Asunto(s)
Iridoides/química , Simulación por Computador , Hidrólisis , Glucósidos Iridoides , Espectrometría de Masas , Oxidación-Reducción
9.
Biomacromolecules ; 17(9): 2873-81, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27476327

RESUMEN

Aqueous tetrabutylammonium hydroxide, TBAH(aq), has been found to dissolve cellulose and to be a potential solvent for chemical processing or fiber spinning. In this paper, we have investigated the dissolution state of cellulose in 40 wt % TBAH(aq) solvent, and present an extensive study of rheology, combined with static light and small-angle X-ray scattering, to correlate cellulose aggregation with changes in the rheological parameters. Two cellulose molecular weights are compared. Microcrystalline cellulose (MCC), with a degree of polymerization of ca. 260, and a dissolving pulp with an approximately ten times higher molecular weight. Scattering data demonstrate that cellulose is molecularly dissolved at lower cellulose concentrations, while aggregates are present when the concentration exceeds a certain value. The onset of the aggregate formation is marked by a pronounced increase in the scattering intensity at low q, shear thinning behavior and violation of the empirical Cox-Merz rule. Additionally, the SAXS data suggest the presence of a solvation shell enriched in TBA(+) ions, compared to the bulk solvent. The results are consistent with the recent suggestion that while native cellulose I may still dissolve, solutions are, above a particular concentration, becoming supersaturated with respect to the more stable crystal form cellulose II.


Asunto(s)
Celulosa/química , Compuestos de Amonio Cuaternario/química , Agua/química , Dispersión del Ángulo Pequeño , Solubilidad , Temperatura , Viscosidad , Difracción de Rayos X
10.
J Transl Med ; 13: 218, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26152229

RESUMEN

BACKGROUND: The cardio-protective effects of flavonoids are still controversial; many studies referred to the benefits of specific foods, such as soy, cocoa, tea. A population-based cohort of middle-aged adults, coming from a semi-rural area where the consumption of those foods is almost negligible, was studied. AIMS: The primary objective was establishing if flavonoid intake was inversely associated with the cardiovascular (CV) risk evaluated after 12-year follow-up; the associations between flavonoid intake and CV incidence and mortality and all-cause mortality were also evaluated. METHODS: In 2001-2003, a cohort of 1,658 individuals completed a validated food-frequency questionnaire. Anthropometric, laboratory measurements, medical history and the vital status were collected at baseline and during 2014. The CV risk was estimated with the Framingham risk score. RESULTS: Individuals with the lowest tertile of flavonoid intake showed a worse metabolic pattern and less healthy lifestyle habits. The 2014 CV risk score and the increase in the risk score from baseline were significantly higher with the lowest intake of total and all subclasses of flavonoids, but isoflavones, in a multiple regression model. During follow-up, 125 CV events and 220 deaths (84 of which due to CV causes) occurred. CV non-fatal events were less frequent in individuals with higher flavonoid intake (HR = 0.64; 95%CI 0.42-1.00 and HR = 0.46; 95%CI 0.28-0.75 for the second and third tertiles, respectively) in Cox-regression models, after multiple adjustments. All subclasses of flavonoids, but flavones and isoflavones, were inversely correlated with incident CV events, with HRs ranging from 0.42 (flavan-3-ols) to 0.56 (anthocyanidins). Being in the third tertile of flavan-3-ols (HR = 0.68; 95% CI 0.48-0.96), anthocyanidins (HR = 0.66; 95% CI 0.46-0.95) and flavanones (HR = 0.59; 95% CI 0.40-0.85) was inversely associated with all-cause mortality. Total and subclasses of flavonoids were not significantly associated with the risk of CV mortality. CONCLUSIONS: Flavonoid intake was inversely associated with CV risk, CV non-fatal events and all-cause mortality in a cohort with a low consumption of soy, tea and cocoa, which are typically viewed as the foods responsible for flavonoid-related benefits.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Dieta , Conducta Alimentaria , Flavonoides/farmacología , Enfermedades Cardiovasculares/mortalidad , Estudios de Cohortes , Humanos , Italia/epidemiología , Persona de Mediana Edad , Análisis de Regresión , Factores de Riesgo
11.
Chemphyschem ; 16(11): 2459-65, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26083451

RESUMEN

Metastability and phase coexistence are important concepts in colloidal science. Typically, the phase diagram of colloidal systems is considered at the equilibrium without the presence of an external field. However, several studies have reported phase transition under mechanical deformation. The reason behind phase coexistence under shear flow is not fully understood. Here, multilamellar vesicle (MLV)-to-sponge (L3 ) and MLV-to-Lα transitions upon increasing temperature are detected using flow small-angle neutron scattering techniques. Coexistence of Lα and MLV phases at 40 °C under shear flow is detected by using flow NMR spectroscopy. The unusual rheological behavior observed by studying the lamellar phase of a non-ionic surfactant is explained using (2) H NMR and diffusion flow NMR spectroscopy with the coexistence of planar lamellar-multilamellar vesicles. Moreover, a dynamic phase diagram over a wide range of temperatures is proposed.

12.
Langmuir ; 30(28): 8316-25, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24983325

RESUMEN

The formation of multilamellar vesicles (MLVs) from the lamellar phase of nonionic surfactant system C12E5/D2O under shear flow is studied by time-resolved small angle neutron and light scattering during shear flow. A novel small angle neutron scattering sample environment enables the tracking of the lamellae alignment in the velocity-velocity gradient (1-2) plane during MLV formation, which was tracked independently using flow small angle light scattering commensurate with rheology. During the lamellar-to-multilamellar vesicle transition, the primary Bragg peak from the lamellar ordering was observed to tilt, and this gradually increased with time, leading to an anisotropic pattern with a primary axis oriented at ∼25° relative to the flow direction. This distorted pattern persists under flow after MLV formation. A critical strain and critical capillary number based on the MLV viscosity are demonstrated for MLV formation, which is shown to be robust for other systems as well. These novel measurements provide fundamentally new information about the flow orientation of lamellae in the plane of flow that cannot be anticipated from the large body of previous literature showing nearly isotropic orientation in the 2,3 and 1,3 planes of flow. These observations are consistent with models for buckling-induced MLV formation but suggest that the instability is three-dimensional, thereby identifying the mechanism of MLV formation in simple shear flow.

13.
J Colloid Interface Sci ; 660: 1030-1038, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220494

RESUMEN

HYPOTHESIS: Triblock copolymers of poly(ethylene oxide) and poly(propylene oxide)-based matrices, such as Poloxamer 407 (P407) or Pluronic® F127, are extensively utilized in drug delivery and permeation systems due to their FDA approval and listing in the US and European Pharmacopoeias. The study hypothesizes that incorporating 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and the celecoxib-HP-ß-CD inclusion complex into a 16 wt% P407 and chitosan blend in an aqueous acetic acid solution will affect the system's rheological and structural properties. EXPERIMENTS: Rheological, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) experiments were conducted to assess the impact of acetic acid and chitosan on the 16 wt% P407 and chitosan blend. Additionally, in vitro drug release studies were performed to monitor the drug release profile over time. FINDINGS: The addition of HP-ß-CD was found to inhibit gel formation in the 16 wt% P407 and chitosan blend. However, the presence of the celecoxib-HP-ß-CD inclusion complex showed no significant structural effects compared to P407 blended with chitosan alone. Rheological and SAXS analyses demonstrated that acetic acid led to the formation of a lamellar phase due to the lower pH, facilitating injectability. The presence of chitosan in acetic acid resulted in the detection of a hexagonal phase, affecting the release of celecoxib.


Asunto(s)
Quitosano , Polietilenglicoles , Glicoles de Propileno , 2-Hidroxipropil-beta-Ciclodextrina , Quitosano/química , Celecoxib , Liberación de Fármacos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Poloxámero/química , Acetatos
14.
Heliyon ; 10(3): e25260, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38327442

RESUMEN

This study explores how a simple argentometric titration-like approach could be evolved into a versatile, scalable, fast, and robust strategy for the production of AgCl/quaternary ammonium compounds (QACs) colloidal nanoantimicrobials (NAMs). These systems, which are green, stable, cost-effective, and reproducible are found to be effective against a wide range of food pathogenic bacteria and biofilms. The option of a large-scale production for such colloidal suspensions was explored via the use of a peristaltic pump. The utilization of various types of biosafe QACs and a wide range of solvents including aqueous and organic ones renders this system green and versatile. Nanocolloids (NCs) were characterized using UV-Vis, X-ray photoelectron and Fourier transform infrared (FTIR) spectroscopies. Their morphology and crystalline nature were investigated by transmission electron microscopy (TEM) and selected area diffraction pattern (SAED). Nanoparticle (NP) size distribution and hydrodynamic radius were measured by dynamic light scattering (DLS), while the ζ-potential was found to be highly positive, thus indicating significant colloidal stability and antimicrobial activity. In fact, the higher the NP surface charge, the stronger was their bioactivity. Furthermore, the antibacterial and antibiofilm effects of the as-prepared NCs were tested against Gram-positive bacteria, such as Staphylococcus aureus (ATCC 29213) and Listeria monocytogenes 46, and Gram-negative bacteria, such as Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The results clearly indicate that AgCl/QACs provide pronounced antibiofilm activity with long-term bacteriostatic effects against foodborne pathogenic bacteria rendering them an ideal choice for active food packaging systems.

15.
Discov Nano ; 19(1): 100, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861141

RESUMEN

In this work, we demonstrate that a simple argentometric titration is a scalable, fast, green and robust approach for producing AgCl/antibiotic hybrid antimicrobial materials. We titrated AgNO3 into tetracycline hydrochloride (TCH) aqueous solution, thus forming AgCl/TCH in a one-step procedure. Furthermore, we investigated the one-pot synthesis of triply synergistic super-nanoantimicrobials, combining an inorganic source of Ag+ ions (AgCl), a disinfecting agent (benzyl-dimethyl-hexadecyl-ammonium chloride, BAC) and a molecular antibiotic (tetracycline hydrochloride, TCH). Conventional antimicrobial tests, industrial biofilm detection protocols, and in situ IR-ATR microbial biofilm monitoring, have been adapted to understand the performance of the synthesized super-nanoantimicrobial. The resulting hybrid AgCl/BAC/TCH nanoantimicrobials are found to be synergistically active in eradicating Salmonella enterica and Lentilactobacillus parabuchneri bacteria and biofilms. This study paves the way for the development of a new class of super-efficient nanoantimicrobials that combine relatively low amounts of multiple active species into a single (nano)formulation, thus preventing the development of antimicrobial resistance towards a single active principle.

16.
Antibiotics (Basel) ; 12(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36830105

RESUMEN

Unlike other antimicrobial agents, Ag-based composites are stable and currently widely used as broad spectral additives, fighting microbial biofilms and other biological threats. The goal of the present study is to develop a green, multifunctional, and robust antibiofilm water-insoluble coating, inhibiting histamine-producing Lentilactobacillus parabuchneri biofilms. Herein, laser-ablated Ag NPs (L-Ag NPs) were incorporated into and onto a montmorillonite (MMT) surface layer with a simple wet chemical method, provided that the electrostatic interaction between L-Ag NPs and MMT clay led to the formation of L-Ag/MMT nanoantimicrobials (NAMs). The use of MMT support can facilitate handling Ag NPs in industrial applications. The Ag/MMT composite was characterized with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), which confirmed the entrapment of L-Ag NPs into MMT clay. The surface chemical composition was assessed with X-ray photoelectron spectroscopy, proving that Ag NPs were in contact with and deposited onto the surface of MMT. The characteristic L-Ag/MMT band was investigated with UV-vis spectroscopy. Following that, the L-Ag/MMT composite was embedded into a biosafe water-insoluble beeswax agent with a spin coating technique. The antimicrobial ion release kinetic profile of the L-Ag/MMT/beeswax coating through an electrothermal atomic absorption spectroscopy (ETAAS) study supported the controlled release of Ag ions, reaching a plateau at 420 ± 80 nM, which is safe from the point of view of Ag toxicity. Microbial biofilm growth inhibition was assessed with real-time in situ Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) in a flow cell assembly over 32 h. The study was further supported by optical density (OD) measurements and SEM on bacteria incubated in the presence of the L-Ag/MMT/beeswax coating.

17.
J Colloid Interface Sci ; 606(Pt 2): 1890-1896, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34689045

RESUMEN

HYPOTHESIS: Ferrihydrite (Fh) nanoparticles are receiving considerable scientific interest due to their large reactive surface areas, crystalline structures, and nanoparticle morphology. They are of great importance in biogeochemical processes and have the ability to sequester hazardous and toxic substances. Here, the working hypothesis was to entrap fractal-like Fh nanoparticles, with a radius of gyration of 6.2 nm and a primary building block of polydisperse spheres with a radius of 0.8 nm, in a shear-induced multilamellar vesicle (MLV) state using a 40 wt% polyethylene glycol dodecyl ether surfactant. EXPERIMENTS: Small- and Wide- Angle X-ray scattering revealed the equilibrium state of the non-ionic planar lamellar phase, the Fh dispersion, and their mixture. The MLV state was induced by using a shear flow in a Taylor-Couette geometry of a rheometer. FINDINGS: The nonionic surfactant initially exhibited a lamellar gel phase with two distinct d-spacings of 11.0 and 9.7 nm, which collapsed into the MLV state under shear flow. The Fh nanoparticles induced bilayer attraction by suppressing lamellar layer undulations, decreasing the d-spacing. These results are helpful in the understanding of the relationship between nanoparticle size and nanoparticle-bilayers interactions and provides insight on Fh encapsulations in a kinetically stable MLVs state.


Asunto(s)
Nanopartículas , Tensoactivos , Compuestos Férricos , Polímeros
18.
IUCrJ ; 9(Pt 4): 492-496, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844479

RESUMEN

Here, a new accurate approach is presented to quantify the degree of crystallinity of regenerated cellulose textile fibers using wide-angle X-ray scattering. The approach is based on the observation that the contributions to the scattering from crystalline and amorphous domains of the fibers can be separated due to their different degree of orientation with respect to the fiber direction. The method is tested on Ioncell-F fibers, dry jet wet spun with different draw ratios from an ionic liquid solution. The analysis output includes, apart from an accurate estimate of the fiber crystallinity, the degrees of orientation of the cellulose nanocrystals and the cellulose chains in the amorphous domains.

19.
ACS Meas Sci Au ; 2(6): 547-552, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36573077

RESUMEN

Measuring structural features of proteins dispersed in buffer solution, in contrast to crystal form, is indispensable in understanding morphological characteristics of the biomolecule in a native environment. We report on the structure and apparent viscosity of unfolded α and ß variants of SARS-CoV-2 spike proteins dispersed in buffer solutions. The radius of gyration of the ß variant is found to be larger than that of the α variant, while the ab initio computation of one of the possible particle-like bodies is consistent with the small-angle X-ray scattering (SAXS) profiles resembling a conformation similar to the three-dimensional structure of the folded state of the corresponding α and ß spike variant. However, a smaller radius of gyration with respect to the predicted folded state of 2.4 and 2.7 is observed for both α and ß variants, respectively. Our work complements the structural characterization of spike proteins using cryo-electron microscopy techniques. The measurement/analysis discussed here might be useful for quick and cost-effective evaluation of several protein structures, let alone mutated viral proteins, which is useful for drug discovery/development applications.

20.
J Colloid Interface Sci ; 611: 224-234, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34952275

RESUMEN

HYPOTHESIS: Soluplus® is one of the most widely used amphiphilic copolymers in drug delivery and has been reported to strongly enhance the adsorption of model drugs. However, there is still a limited understanding of its micellar behavior as it responds to the different routes of administration, which involve important changes in concentration. EXPERIMENTS: The microstructure of Soluplus aqueous solutions has been investigated at a wide range of polymer concentrations (2 × 10-6 - 0.2 g/mL) by a combination of diffusion NMR (dNMR), small angle X-ray scattering (SAXS), static (SLS) dynamic (DLS) light scattering and viscosity measurements. These techniques have been coupled with surface tension measurements to frame the polymer's critical micellar concentration (cmc). FINDINGS: We demonstrate the presence at all tested concentrations of two forms of Soluplus, with hydrodynamic radii of 3 and 26 nm, where the fraction of smaller objects accounts for as much as 60-70%. dNMR, SAXS, DLS and SLS indicate that Soluplus spontaneously self-assembles into large spherical particles with a core-shell structure. However, self-assembly takes place three orders of magnitude above the cmc evaluated via surface tension measurements. Instead of the traditional cooperative micellization process, we propose a thermal-activated isodesmic self-assembly of the small aggregates into core-shell micelles.


Asunto(s)
Micelas , Polímeros , Polietilenglicoles , Polivinilos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA