Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neuroinflammation ; 18(1): 42, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33573677

RESUMEN

BACKGROUND: Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cell-free hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum. In a recent study, using a preterm rabbit pup model of IVH, intraventricularly administered haptoglobin (Hp), a cell-free Hb scavenger, partially reversed the damaging effects observed following IVH. Together, this suggests that cell-free Hb is central in the pathophysiology of the injury to the immature brain following GM-IVH. An increased understanding of the causal pathways and metabolites involved in eliciting the damaging response following hemorrhage is essential for the continued development and implementation of neuroprotective treatments of GM-IVH in preterm infant. METHODS: We exposed immature primary rat mixed glial cells to hemorrhagic CSF obtained from preterm human infants with IVH (containing a mixture of Hb-metabolites) or to a range of pure Hb-metabolites, incl. oxidized Hb (mainly metHb with iron in Fe3+), oxyHb (mainly Fe2+), or low equivalents of heme, with or without co-administration with human Hp (a mixture of isotype 2-2/2-1). Following exposure, cellular response, reactive oxygen species (ROS) generation, secretion and expression of pro-inflammatory cytokines and oxidative markers were evaluated. RESULTS: Exposure of the glial cells to hemorrhagic CSF as well as oxidized Hb, but not oxyHb, resulted in a significantly increased rate of ROS production that positively correlated with the rate of production of pro-inflammatory and oxidative markers. Congruently, exposure to oxidized Hb caused a disintegration of the polygonal cytoskeletal structure of the glial cells in addition to upregulation of F-actin proteins in microglial cells. Co-administration of Hp partially reversed the damaging response of hemorrhagic CSF and oxidized Hb. CONCLUSION: Exposure of mixed glial cells to oxidized Hb initiates a pro-inflammatory and oxidative response with cytoskeletal disintegration. Early administration of Hp, aiming to minimize the spontaneous autoxidation of cell-free oxyHb and liberation of heme, may provide a therapeutic benefit in preterm infant with GM-IVH.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Hemoglobinas/metabolismo , Mediadores de Inflamación/metabolismo , Neuroglía/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula , Sistema Libre de Células/efectos de los fármacos , Sistema Libre de Células/metabolismo , Hemorragia Cerebral/líquido cefalorraquídeo , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Hemoglobinas/administración & dosificación , Humanos , Recién Nacido , Neuroglía/efectos de los fármacos , Oxígeno/administración & dosificación , Ratas , Ratas Sprague-Dawley
2.
Mol Pharm ; 18(8): 3158-3170, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34292741

RESUMEN

Cell-free hemoglobin (Hb) is a driver of disease progression in conditions with intravascular or localized hemolysis. Genetic and acquired anemias or emergency medical conditions such as aneurysmal subarachnoid hemorrhage involve tissue Hb exposure. Haptoglobin (Hp) captures Hb in an irreversible protein complex and prevents its pathophysiological contributions to vascular nitric oxide depletion and tissue oxidation. Preclinical proof-of-concept studies suggest that human plasma-derived Hp is a promising therapeutic candidate for several Hb-driven diseases. Optimizing the efficacy and safety of Hb-targeting biotherapeutics may require structural and functional modifications for specific indications. Improved Hp variants could be designed to achieve the desired tissue distribution, metabolism, and elimination to target hemolytic disease states effectively. However, it is critical to ensure that these modifications maintain the function of Hp. Using transient mammalian gene expression of Hp combined with co-transfection of the pro-haptoglobin processing protease C1r-LP, we established a platform for generating recombinant Hp-variants. We designed an Hpß-scaffold, which was expressed in this system at high levels as a monomeric unit (mini-Hp) while maintaining the key protective functions of Hp. We then used this Hpß-scaffold as the basis to develop an initial proof-of-concept Hp fusion protein using human serum albumin as the fusion partner. Next, a hemopexin-Hp fusion protein with bispecific heme and Hb detoxification capacity was generated. Further, we developed a Hb scavenger devoid of CD163 scavenger receptor binding. The functions of these proteins were then characterized for Hb and heme-binding, binding of the Hp-Hb complexes with the clearance receptor CD163, antioxidant properties, and vascular nitric oxide sparing capacity. Our platform is designed to support the generation of innovative Hb scavenger biotherapeutics with novel modes of action and potentially improved formulation characteristics, function, and pharmacokinetics.


Asunto(s)
Productos Biológicos/metabolismo , Diseño de Fármacos/métodos , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemopexina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Arteria Basilar/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Células HEK293 , Haptoglobinas/química , Haptoglobinas/genética , Hemo/metabolismo , Hemoglobinas/química , Hemólisis , Hemopexina/química , Hemopexina/genética , Humanos , Unión Proteica , Receptores de Superficie Celular/metabolismo , Receptores Depuradores/metabolismo , Proteínas Recombinantes de Fusión/genética , Albúmina Sérica Humana/química , Albúmina Sérica Humana/genética , Albúmina Sérica Humana/metabolismo , Porcinos , Transfección , Vasodilatación/efectos de los fármacos
3.
Transl Stroke Res ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652234

RESUMEN

Secondary brain injury (SBI) occurs with a lag of several days post-bleeding in patients with aneurysmal subarachnoid hemorrhage (aSAH) and is a strong contributor to mortality and long-term morbidity. aSAH-SBI coincides with cell-free hemoglobin (Hb) release into the cerebrospinal fluid. This temporal association and convincing pathophysiological concepts suggest that CSF-Hb could be a targetable trigger of SBI. However, sparse experimental evidence for Hb's neurotoxicity in vivo defines a significant research gap for clinical translation. We modeled the CSF-Hb exposure observed in aSAH patients in conscious sheep, which allowed us to assess neurological functions in a gyrencephalic species. Twelve animals were randomly assigned for 3-day bi-daily intracerebroventricular (ICV) injections of either Hb or Hb combined with the high-affinity Hb scavenger protein haptoglobin (Hb-Hp, CSL888). Repeated CSF sampling confirmed clinically relevant CSF-Hb concentrations. This prolonged CSF-Hb exposure over 3 days resulted in disturbed movement activity, reduced food intake, and impaired observational neuroscores. The Hb-induced neurotoxic effects were significantly attenuated when Hb was administered with equimolar haptoglobin. Preterminal magnetic resonance imaging (MRI) showed no CSF-Hb-specific structural brain alterations. In both groups, histology demonstrated an inflammatory response and revealed enhanced perivascular histiocytic infiltrates in the Hb-Hp group, indicative of adaptive mechanisms. Heme exposure in CSF and iron deposition in the brain were comparable, suggesting comparable clearance efficiency of Hb and Hb-haptoglobin complexes from the intracranial compartment. We identified a neurological phenotype of CSF-Hb toxicity in conscious sheep, which is rather due to neurovascular dysfunction than structural brain injury. Haptoglobin was effective at attenuating CSF-Hb-induced neurological deterioration, supporting its therapeutic potential.

4.
J Allergy Clin Immunol ; 128(6): 1227-1234.e5, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21855127

RESUMEN

BACKGROUND: The in vivo autologous serum skin test (ASST) is the diagnostic gold standard to detect autoantibodies against FcεRI or IgE itself, as well as other autoreactive serum components, in patients with chronic spontaneous urticaria (CU). Coincubation of patient sera with donor basophils and measuring their degranulation in vitro could be a safe alternative but has shown inconsistent results. OBJECTIVE: Optimization of the basophil activation test to detect autoreactive serum components in patients with CU. METHODS: The ability of patient sera to induce CD63 and CD203c in donor basophils (n = 15) was measured by means of flow cytometry. Sera of 20 patients with CU (10 with positive ASST results), 15 patients with cold urticaria, and 27 healthy control subjects were included to optimize test conditions with donor basophils and a basophil cell line (RBL703/21) followed by testing of 110 consecutive patients from clinical routine. RESULTS: We demonstrate that individual IL-3 priming normalized the initially inconsistent basophil reactivity and led to reproducible and comparable test results irrespective of the basophil donors used. CD203c as an activation marker and the use of a basophil cell line were less suitable for this purpose. CONCLUSION: The basophil activation test with individualized IL-3 priming for each basophil donor is a reproducible and reliable alternative to the ASST. There are several advantages over the ASST: no risk of accidental infection, no influence of antihistamines on the test result, quantifiable results, and a potential in providing treatment monitoring. The exact nature of the degranulating factor or factors in patient sera remains an open question.


Asunto(s)
Prueba de Desgranulación de los Basófilos/métodos , Basófilos/inmunología , Interleucina-3/inmunología , Urticaria/diagnóstico , Adolescente , Adulto , Anciano , Basófilos/metabolismo , Separación Celular , Enfermedad Crónica , Femenino , Citometría de Flujo , Humanos , Interleucina-3/metabolismo , Masculino , Persona de Mediana Edad , Urticaria/inmunología , Adulto Joven
5.
Cell Death Differ ; 29(8): 1450-1465, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35031770

RESUMEN

Heme is an erythrocyte-derived toxin that drives disease progression in hemolytic anemias, such as sickle cell disease. During hemolysis, specialized bone marrow-derived macrophages with a high heme-metabolism capacity orchestrate disease adaptation by removing damaged erythrocytes and heme-protein complexes from the blood and supporting iron recycling for erythropoiesis. Since chronic heme-stress is noxious for macrophages, erythrophagocytes in the spleen are continuously replenished from bone marrow-derived progenitors. Here, we hypothesized that adaptation to heme stress progressively shifts differentiation trajectories of bone marrow progenitors to expand the capacity of heme-handling monocyte-derived macrophages at the expense of the homeostatic generation of dendritic cells, which emerge from shared myeloid precursors. This heme-induced redirection of differentiation trajectories may contribute to hemolysis-induced secondary immunodeficiency. We performed single-cell RNA-sequencing with directional RNA velocity analysis of GM-CSF-supplemented mouse bone marrow cultures to assess myeloid differentiation under heme stress. We found that heme-activated NRF2 signaling shifted the differentiation of bone marrow cells towards antioxidant, iron-recycling macrophages, suppressing the generation of dendritic cells in heme-exposed bone marrow cultures. Heme eliminated the capacity of GM-CSF-supplemented bone marrow cultures to activate antigen-specific CD4 T cells. The generation of functionally competent dendritic cells was restored by NRF2 loss. The heme-induced phenotype of macrophage expansion with concurrent dendritic cell depletion was reproduced in hemolytic mice with sickle cell disease and spherocytosis and associated with reduced dendritic cell functions in the spleen. Our data provide a novel mechanistic underpinning of hemolytic stress as a driver of hyposplenism-related secondary immunodeficiency.


Asunto(s)
Anemia de Células Falciformes , Células de la Médula Ósea , Células Dendríticas , Hemo , Macrófagos , Factor 2 Relacionado con NF-E2 , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Células Dendríticas/citología , Eritropoyesis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Hemólisis , Hierro , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , ARN , Bazo
6.
J Clin Med ; 11(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35160081

RESUMEN

People living with sickle cell disease (SCD) face intermittent acute pain episodes due to vaso-occlusion primarily treated palliatively with opioids. Hemolysis of sickle erythrocytes promotes release of heme, which activates inflammatory cell adhesion proteins on endothelial cells and circulating cells, promoting vaso-occlusion. In this study, plasma-derived hemopexin inhibited heme-mediated cellular externalization of P-selectin and von Willebrand factor, and expression of IL-8, VCAM-1, and heme oxygenase-1 in cultured endothelial cells in a dose-responsive manner. In the Townes SCD mouse model, intravenous injection of free hemoglobin induced vascular stasis (vaso-occlusion) in nearly 40% of subcutaneous blood vessels visualized in a dorsal skin-fold chamber. Hemopexin administered intravenously prevented or relieved stasis in a dose-dependent manner. Hemopexin showed parallel activity in relieving vascular stasis induced by hypoxia-reoxygenation. Repeated IV administration of hemopexin was well tolerated in rats and non-human primates with no adverse findings that could be attributed to human hemopexin. Hemopexin had a half-life in wild-type mice, rats, and non-human primates of 80-102 h, whereas a reduced half-life of hemopexin in Townes SCD mice was observed due to ongoing hemolysis. These data have led to a Phase 1 clinical trial of hemopexin in adults with SCD, which is currently ongoing.

7.
Free Radic Biol Med ; 175: 95-107, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478834

RESUMEN

Hemopexin (Hpx) is a crucial defense protein against heme liberated from degraded hemoglobin during hemolysis. High heme stress creates an imbalance in Hpx bioavailability, favoring heme accumulation and downstream pathophysiological responses leading to cardiopulmonary disease progression in sickle cell disease (SCD) patients. Here, we evaluated a model of murine SCD, which was designed to accelerate red blood cell sickling, pulmonary hypertension, right ventricular dysfunction, and exercise intolerance by exposure of the mice to moderate hypobaric hypoxia. The sequence of pathophysiology in this model tracks with circulatory heme accumulation, lipid oxidation, extensive remodeling of the pulmonary vasculature, and fibrosis. We hypothesized that Hpx replacement for an extended period would improve exercise tolerance measured by critical speed as a clinically meaningful therapeutic endpoint. Further, we sought to define the effects of Hpx on upstream cardiopulmonary function, histopathology, and tissue oxidation. Our data shows that tri-weekly administrations of Hpx for three months dose-dependently reduced heme exposure and pulmonary hypertension while improving cardiac pressure-volume relationships and exercise tolerance. Furthermore, Hpx administration dose-dependently attenuated pulmonary fibrosis and oxidative modifications in the lung and myocardium of the right ventricle. Observations in our SCD murine model are consistent with pulmonary vascular and right ventricular pathology at autopsy in SCD patients having suffered from severe pulmonary hypertension, right ventricular dysfunction, and sudden cardiac death. This study provides a translational evaluation supported by a rigorous outcome analysis demonstrating therapeutic proof-of-concept for Hpx replacement in SCD.


Asunto(s)
Anemia de Células Falciformes , Hemopexina , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Hemo , Hemoglobinas , Hemólisis , Humanos , Ratones
8.
Front Immunol ; 11: 1684, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849588

RESUMEN

Hemopexin is the main plasmatic scavenger of cell-free heme, released in the context of intravascular hemolysis or major cell injury. Heme is indispensable for the oxygen transport by hemoglobin but when released outside of the erythrocytes it becomes a danger-associated molecular pattern, contributing to tissue injury. One of the mechanisms of pro-inflammatory action of heme is to activate the innate immune complement cascade. Therefore, we hypothesized that injection of hemopexin will prevent hemolysis-induced complement activation. Human plasma-derived hemopexin is compatible with the heme clearance machinery of the mice. 100 or 500 mg/kg of hemopexin was injected in C57Bl/6 mice before treatment with phenylhydrazine (inducer of erythrocytes lysis) or with PBS as a control. Blood was taken at different timepoints to determine the pharmacokinetic of injected hemopexin in presence and absence of hemolysis. Complement activation was determined in plasma, by the C3 cleavage (western blot) and in the kidneys (immunofluorescence). Kidney injury was evaluated by urea and creatinine in plasma and renal NGAL and HO-1 gene expression were measured. The pharmacokinetic properties of hemopexin (mass spectrometry) in the hemolytic mice were affected by the target-mediated drug disposition phenomenon due to the high affinity of binding of hemopexin to heme. Hemolysis induced complement overactivation and signs of mild renal dysfunction at 6 h, which were prevented by hemopexin, except for the NGAL upregulation. The heme-degrading capacity of the kidney, measured by the HO-1 expression, was not affected by the treatment. These results encourage further studies of hemopexin as a therapeutic agent in models of diseases with heme overload.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Hemólisis/efectos de los fármacos , Hemopexina/farmacología , Hemopexina/farmacocinética , Animales , Humanos , Riñón/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
9.
Front Immunol ; 9: 179, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29545789

RESUMEN

Intravascular erythrocyte destruction, accompanied by the release of pro-oxidative and pro-inflammatory components hemoglobin and heme, is a common event in the pathogenesis of numerous diseases with heterogeneous etiology and clinical features. A frequent adverse effect related to massive hemolysis is the renal injury and inflammation. Nevertheless, it is still unclear whether heme--a danger-associated molecular pattern--and ligand for TLR4 or upstream hemolysis-derived products are responsible for these effects. Well-characterized animal models of hemolysis with kidney impairment are needed to investigate how hemolysis drives kidney injury and to test novel therapeutic strategies. Here, we characterized the pathological processes leading to acute kidney injury and inflammation during massive intravascular hemolysis, using a mouse model of phenylhydrazine (PHZ)-triggered erythrocyte destruction. We observed profound changes in mRNA levels for markers of tubular damage (Kim-1, NGAL) and regeneration (indirect marker of tubular injury, Ki-67), and tissue and vascular inflammation (IL-6, E-selectin, P-selectin, ICAM-1) in kidneys of PHZ-treated mice, associated with ultrastructural signs of tubular injury. Moreover, mass spectrometry revealed presence of markers of tubular damage in urine, including meprin-α, cytoskeletal keratins, α-1-antitrypsin, and α-1-microglobulin. Signs of renal injury and inflammation rapidly resolved and the renal function was preserved, despite major changes in metabolic parameters of PHZ-injected animals. Mechanistically, renal alterations were largely heme-independent, since injection of free heme could not reproduce them, and scavenging heme with hemopexin in PHZ-administered mice could not prevent them. Reduced overall health status of the mice suggested multiorgan involvement. We detected amylasemia and amylasuria, two markers of acute pancreatitis. We also provide detailed characterization of renal manifestations associated with acute intravascular hemolysis, which may be mediated by hemolysis-derived products upstream of heme release. This analysis provides a platform for further investigations of hemolytic diseases and associated renal injury and the evaluation of novel therapeutic strategies that target intravascular hemolysis.


Asunto(s)
Lesión Renal Aguda/genética , Lesión Renal Aguda/inmunología , Hemo/metabolismo , Hemólisis , Inflamación , Enfermedades Vasculares/inmunología , Lesión Renal Aguda/inducido químicamente , Animales , Biomarcadores/orina , Células Cultivadas , Modelos Animales de Enfermedad , Selectina E/genética , Eritrocitos/efectos de los fármacos , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Antígeno Ki-67/genética , Riñón/patología , Lipocalina 2/genética , Ratones , Ratones Endogámicos C57BL , Fenilhidrazinas , Enfermedades Vasculares/complicaciones
10.
JCI Insight ; 3(12)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29925688

RESUMEN

In hemolytic diseases, such as sickle cell disease (SCD), intravascular hemolysis results in the release of hemoglobin, heme, and heme-loaded membrane microvesicles in the bloodstream. Intravascular hemolysis is thus associated with inflammation and organ injury. Complement system can be activated by heme in vitro. We investigated the mechanisms by which hemolysis and red blood cell (RBC) degradation products trigger complement activation in vivo. In kidney biopsies of SCD nephropathy patients and a mouse model with SCD, we detected tissue deposits of complement C3 and C5b-9. Moreover, drug-induced intravascular hemolysis or injection of heme or hemoglobin in mice triggered C3 deposition, primarily in kidneys. Renal injury markers (Kim-1, NGAL) were attenuated in C3-/- hemolytic mice. RBC degradation products, such as heme-loaded microvesicles and heme, induced alternative and terminal complement pathway activation in sera and on endothelial surfaces, in contrast to hemoglobin. Heme triggered rapid P selectin, C3aR, and C5aR expression and downregulated CD46 on endothelial cells. Importantly, complement deposition was attenuated in vivo and in vitro by heme scavenger hemopexin. In conclusion, we demonstrate that intravascular hemolysis triggers complement activation in vivo, encouraging further studies on its role in SCD nephropathy. Conversely, heme inhibition using hemopexin may provide a novel therapeutic opportunity to limit complement activation in hemolytic diseases.


Asunto(s)
Sistema Libre de Células , Hemo/metabolismo , Hemólisis/fisiología , Lesión Renal Aguda , Anemia de Células Falciformes , Animales , Complemento C3/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales , Eritrocitos , Femenino , Hemopexina/farmacología , Receptor Celular 1 del Virus de la Hepatitis A , Riñón , Ratones , Ratones Endogámicos C57BL , Selectina-P , Receptor de Anafilatoxina C5a/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
13.
Med Clin North Am ; 94(4): 645-64, xv, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20609855

RESUMEN

Small molecules, used as drugs, can induce immune reactions by binding covalently as haptens to a carrier protein, which is thereby modified and immunogenic. In addition, drugs bind to proteins via hydrogen bonds, electrostatic force, and van der Waals forces, and may directly interact with immune receptors such as T cell receptors or major histocompatibility complex molecules (pharmacologic interaction with immune receptors, so-called p-i concept). Even this noncovalent interaction may stimulate T cells. The ensuing immune response based on hapten-peptide presentation or direct drug-receptor interaction results in many distinct clinical situations. Based on progress in T cell immunology, this heterogeneity of T cell reaction is now also reflected in a subclassification of type IVa to IVd reactions.


Asunto(s)
Hipersensibilidad a las Drogas/etiología , Haptenos/fisiología , Inmunoglobulina E/inmunología , Medicamentos bajo Prescripción/efectos adversos , Linfocitos T/inmunología , Anafilaxia/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Hipersensibilidad a las Drogas/diagnóstico , Hipersensibilidad a las Drogas/inmunología , Interacciones Farmacológicas , Humanos , Complejo Mayor de Histocompatibilidad/inmunología , Medicamentos sin Prescripción/efectos adversos , Receptores de Antígenos de Linfocitos T/inmunología , Factores de Riesgo
14.
Immunol Allergy Clin North Am ; 29(3): 555-66, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19563997

RESUMEN

Diagnosis of drug allergy involves first the recognition of sometimes unusual symptoms as drug allergy and, second, the identification of the eliciting drug. This is an often difficult task, as the clinical picture and underlying pathomechanisms are heterogeneous. In clinical routine, physicians frequently have to rely upon a suggestive history and eventual provocation tests, both having their specific limitations. For this reason both in vivo (skin tests) and in vitro tests are investigated intensively as tools to identify the disease-eliciting drug. One of the tests evaluated in drug allergy is the basophil activation test (BAT). Basophils with their high-affinity IgE receptors are easily accessible and therefore can be used as indicator cells for IgE-mediated reactions. Upon allergen challenge and cross-linking of membrane-bound IgE antibodies (via Fc-epsilon-RI) basophils up-regulate certain activation markers on their surface such as CD63 and CD203c, as well as intracellular markers (eg, phosphorylated p38MAPK). In BAT, these alterations can be detected rapidly on a single-cell basis by multicolor flow cytometry using specific monoclonal antibodies. Combining this technique with in vitro passive sensitization of donor basophils with patients' serum, one can prove the IgE dependence of a drug reaction. This article summarizes the authors' current experience with the BAT in the diagnostic management of immediate-type drug allergy mediated by drug-specific IgE antibodies.


Asunto(s)
Basófilos/metabolismo , Hipersensibilidad a las Drogas/diagnóstico , Hipersensibilidad a las Drogas/inmunología , Hipersensibilidad Inmediata/diagnóstico , Hipersensibilidad Inmediata/inmunología , Alérgenos/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación/metabolismo , Prueba de Desgranulación de los Basófilos/métodos , Prueba de Desgranulación de los Basófilos/estadística & datos numéricos , Basófilos/inmunología , Basófilos/patología , Degranulación de la Célula , Separación Celular , Hipersensibilidad a las Drogas/metabolismo , Hipersensibilidad a las Drogas/patología , Citometría de Flujo , Humanos , Hipersensibilidad Inmediata/metabolismo , Hipersensibilidad Inmediata/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Pirofosfatasas/metabolismo , Receptores de IgE/metabolismo , Pruebas Cutáneas , Tetraspanina 30 , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA