Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Funct Mater ; 34(21)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779415

RESUMEN

Matrix remodeling plays central roles in a range of physiological and pathological processes and is driven predominantly by the activity of matrix metalloproteinases (MMPs), which degrade extracellular matrix (ECM) proteins. Our understanding of how MMPs regulate cell and tissue dynamics is often incomplete as in vivo approaches are lacking and many in vitro strategies cannot provide high-resolution, quantitative measures of enzyme activity in situ within tissue-like 3D microenvironments. Here, we incorporate a Förster resonance energy transfer (FRET) sensor of MMP activity into fully synthetic hydrogels that mimic many properties of the native ECM. We then use fluorescence lifetime imaging to provide a real-time, fluorophore concentration-independent quantification of MMP activity, establishing a highly accurate, readily adaptable platform for studying MMP dynamics in situ. MCF7 human breast cancer cells encapsulated within hydrogels highlight the detection of MMP activity both locally, at the sub-micron level, and within the bulk hydrogel. Our versatile platform may find use in a range of biological studies to explore questions in the dynamics of cancer metastasis, development, and tissue repair by providing high-resolution, quantitative and in situ readouts of local MMP activity within native tissue-like environments.

2.
Nat Mater ; 20(2): 250-259, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32895507

RESUMEN

Organoids can shed light on the dynamic interplay between complex tissues and rare cell types within a controlled microenvironment. Here, we develop gut organoid cocultures with type-1 innate lymphoid cells (ILC1) to dissect the impact of their accumulation in inflamed intestines. We demonstrate that murine and human ILC1 secrete transforming growth factor ß1, driving expansion of CD44v6+ epithelial crypts. ILC1 additionally express MMP9 and drive gene signatures indicative of extracellular matrix remodelling. We therefore encapsulated human epithelial-mesenchymal intestinal organoids in MMP-sensitive, synthetic hydrogels designed to form efficient networks at low polymer concentrations. Harnessing this defined system, we demonstrate that ILC1 drive matrix softening and stiffening, which we suggest occurs through balanced matrix degradation and deposition. Our platform enabled us to elucidate previously undescribed interactions between ILC1 and their microenvironment, which suggest that they may exacerbate fibrosis and tumour growth when enriched in inflamed patient tissues.


Asunto(s)
Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Linfocitos/metabolismo , Organoides/metabolismo , Animales , Femenino , Humanos , Mucosa Intestinal/citología , Linfocitos/citología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Organoides/citología , Factor de Crecimiento Transformador beta1/metabolismo
3.
Methods ; 190: 33-43, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32446959

RESUMEN

High-throughput imaging methods can be applied to relevant cell culture models, fostering their use in research and translational applications. Improvements in microscopy, computational capabilities and data analysis have enabled high-throughput, high-content approaches from endpoint 2D microscopy images. Nonetheless, trade-offs in acquisition, computation and storage between content and throughput remain, in particular when cells and cell structures are imaged in 3D. Moreover, live 3D phase contrast microscopy images are not often amenable to analysis because of the high level of background noise. Cultures of Human induced pluripotent stem cells (hiPSC) offer unprecedented scope to profile and screen conditions affecting cell fate decisions, self-organisation and early embryonic development. However, quantifying changes in the morphology or function of cell structures derived from hiPSCs over time presents significant challenges. Here, we report a novel method based on the analysis of live phase contrast microscopy images of hiPSC spheroids. We compare self-renewing versus differentiating media conditions, which give rise to spheroids with distinct morphologies; round versus branched, respectively. These cell structures are segmented from 2D projections and analysed based on frame-to-frame variations. Importantly, a tailored convolutional neural network is trained and applied to predict culture conditions from time-frame images. We compare our results with more classic and involved endpoint 3D confocal microscopy and propose that such approaches can complement spheroid-based assays developed for the purpose of screening and profiling. This workflow can be realistically implemented in laboratories using imaging-based high-throughput methods for regenerative medicine and drug discovery.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Técnicas de Cultivo de Célula , Humanos , Células Madre Pluripotentes Inducidas , Microscopía Confocal , Esferoides Celulares
4.
Stem Cells ; 36(9): 1380-1392, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29726060

RESUMEN

The transcriptional profile induced by hypoxia plays important roles in the chondrogenic differentiation of marrow stromal/stem cells (MSC) and is mediated by the hypoxia inducible factor (HIF) complex. However, various compounds can also stabilize HIF's oxygen-responsive element, HIF-1α, at normoxia and mimic many hypoxia-induced cellular responses. Such compounds may prove efficacious in cartilage tissue engineering, where microenvironmental cues may mediate functional tissue formation. Here, we investigated three HIF-stabilizing compounds, which each have distinct mechanisms of action, to understand how they differentially influenced the chondrogenesis of human bone marrow-derived MSC (hBM-MSC) in vitro. hBM-MSCs were chondrogenically-induced in transforming growth factor-ß3-containing media in the presence of HIF-stabilizing compounds. HIF-1α stabilization was assessed by HIF-1α immunofluorescence staining, expression of HIF target and articular chondrocyte specific genes by quantitative polymerase chain reaction, and cartilage-like extracellular matrix production by immunofluorescence and histochemical staining. We demonstrate that all three compounds induced similar levels of HIF-1α nuclear localization. However, while the 2-oxoglutarate analog dimethyloxalylglycine (DMOG) promoted upregulation of a selection of HIF target genes, desferrioxamine (DFX) and cobalt chloride (CoCl2 ), compounds that chelate or compete with divalent iron (Fe2+ ), respectively, did not. Moreover, DMOG induced a more chondrogenic transcriptional profile, which was abolished by Acriflavine, an inhibitor of HIF-1α-HIF-ß binding, while the chondrogenic effects of DFX and CoCl2 were more limited. Together, these data suggest that HIF-1α function during hBM-MSC chondrogenesis may be regulated by mechanisms with a greater dependence on 2-oxoglutarate than Fe2+ availability. These results may have important implications for understanding cartilage disease and developing targeted therapies for cartilage repair. Stem Cells 2018;36:1380-1392.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Células Madre Mesenquimatosas/efectos de los fármacos , Aminoácidos Dicarboxílicos/farmacología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/fisiología , Niño , Condrogénesis/efectos de los fármacos , Cobalto/farmacología , Deferoxamina/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
5.
Biophys J ; 114(11): 2743-2755, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874622

RESUMEN

Extracellular matrix stiffness has a profound effect on the behavior of many cell types. Adherent cells apply contractile forces to the material on which they adhere and sense the resistance of the material to deformation-its stiffness. This is dependent on both the elastic modulus and the thickness of the material, with the corollary that single cells are able to sense underlying stiff materials through soft hydrogel materials at low (<10 µm) thicknesses. Here, we hypothesized that cohesive colonies of cells exert more force and create more hydrogel deformation than single cells, therefore enabling them to mechanosense more deeply into underlying materials than single cells. To test this, we modulated the thickness of soft (1 kPa) elastic extracellular-matrix-functionalized polyacrylamide hydrogels adhered to glass substrates and allowed colonies of MG63 cells to form on their surfaces. Cell morphology and deformations of fluorescent fiducial-marker-labeled hydrogels were quantified by time-lapse fluorescence microscopy imaging. Single-cell spreading increased with respect to decreasing hydrogel thickness, with data fitting to an exponential model with half-maximal response at a thickness of 3.2 µm. By quantifying cell area within colonies of defined area, we similarly found that colony-cell spreading increased with decreasing hydrogel thickness but with a greater half-maximal response at 54 µm. Depth-sensing was dependent on Rho-associated protein kinase-mediated cellular contractility. Surface hydrogel deformations were significantly greater on thick hydrogels compared to thin hydrogels. In addition, deformations extended greater distances from the periphery of colonies on thick hydrogels compared to thin hydrogels. Our data suggest that by acting collectively, cells mechanosense rigid materials beneath elastic hydrogels at greater depths than individual cells. This raises the possibility that the collective action of cells in colonies or sheets may allow cells to sense structures of differing material properties at comparatively large distances.


Asunto(s)
Mecanotransducción Celular , Línea Celular Tumoral , Elasticidad , Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos , Seudópodos/metabolismo , Análisis de la Célula Individual , Quinasas Asociadas a rho/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(14): 4280-5, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831522

RESUMEN

Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells' global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell-material interactions and suggest alternative research routes for evaluating biomaterials to improve their design.


Asunto(s)
Materiales Biocompatibles/química , Sustitutos de Huesos/química , Estroncio/química , Regeneración Ósea , Cerámica/química , Colesterol/química , Medios de Cultivo Condicionados/química , Vidrio/química , Humanos , Lípidos/química , Ensayo de Materiales , Microdominios de Membrana , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ácido Mevalónico/química , Análisis por Micromatrices , Miosinas/química , Fosforilación , Proteínas/química , ARN Mensajero/metabolismo , Espectrometría Raman , Regulación hacia Arriba
7.
Proc Natl Acad Sci U S A ; 109(35): 14170-5, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22879397

RESUMEN

Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.


Asunto(s)
Apatitas/metabolismo , Calcificación Fisiológica/fisiología , Fosfatos de Calcio/metabolismo , Osteoblastos/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Apatitas/química , Transporte Biológico/fisiología , Fosfatos de Calcio/química , Cristalización , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Osteoblastos/citología , Osteoblastos/ultraestructura , Cráneo/citología , Espectroscopía de Pérdida de Energía de Electrones
8.
Nat Mater ; 12(6): 576-83, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23603848

RESUMEN

The accumulation of calcified material in cardiovascular tissue is thought to involve cytochemical, extracellular matrix and systemic signals; however, its precise composition and nanoscale architecture remain largely unexplored. Using nano-analytical electron microscopy techniques, we examined valves, aortae and coronary arteries from patients with and without calcific cardiovascular disease and detected spherical calcium phosphate particles, regardless of the presence of calcific lesions. We also examined lesions after sectioning with a focused ion beam and found that the spherical particles are composed of highly crystalline hydroxyapatite that crystallographically and structurally differs from bone mineral. Taken together, these data suggest that mineralized spherical particles may play a fundamental role in calcific lesion formation. Their ubiquitous presence in varied cardiovascular tissues and from patients with a spectrum of diseases further suggests that lesion formation may follow a common process. Indeed, applying materials science techniques to ectopic and orthotopic calcification has great potential to lend critical insights into pathophysiological processes underlying calcific cardiovascular disease.


Asunto(s)
Calcinosis/patología , Cardiomiopatías/patología , Microscopía Electrónica/métodos , Aorta/patología , Aorta/ultraestructura , Calcificación Fisiológica , Fosfatos de Calcio/análisis , Vasos Coronarios/patología , Vasos Coronarios/ultraestructura , Durapatita/análisis , Enfermedades de las Válvulas Cardíacas/patología , Válvulas Cardíacas/patología , Válvulas Cardíacas/ultraestructura , Humanos , Microscopía Electrónica de Rastreo , Nanotecnología/métodos , Calcificación Vascular/patología
9.
Adv Sci (Weinh) ; 11(5): e2302165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009508

RESUMEN

The intestine performs functions central to human health by breaking down food and absorbing nutrients while maintaining a selective barrier against the intestinal microbiome. Key to this barrier function are the combined efforts of lumen-lining specialized intestinal epithelial cells, and the supportive underlying immune cell-rich stromal tissue. The discovery that the intestinal epithelium can be reproduced in vitro as intestinal organoids introduced a new way to understand intestinal development, homeostasis, and disease. However, organoids reflect the intestinal epithelium in isolation whereas the underlying tissue also contains myriad cell types and impressive chemical and structural complexity. This review dissects the cellular and matrix components of the intestine and discusses strategies to replicate them in vitro using principles drawing from bottom-up biological self-organization and top-down bioengineering. It also covers the cellular, biochemical and biophysical features of the intestinal microenvironment and how these can be replicated in vitro by combining strategies from organoid biology with materials science. Particularly accessible chemistries that mimic the native extracellular matrix are discussed, and bioengineering approaches that aim to overcome limitations in modelling the intestine are critically evaluated. Finally, the review considers how further advances may extend the applications of intestinal models and their suitability for clinical therapies.


Asunto(s)
Bioingeniería , Mucosa Intestinal , Humanos , Organoides/metabolismo , Ingeniería Biomédica , Células Epiteliales/metabolismo
10.
Methods Mol Biol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38647865

RESUMEN

Organoids have emerged as robust tools for unravelling the mechanisms that underly tissue development. They also serve as important in vitro systems for studying fundamentals of stem cell behavior and for building advanced disease models. During early development, a crucial step in the formation of the central nervous system is patterning of the neural tube dorsal-ventral (DV) axis. Here we describe a simple and rapid culture protocol to produce human neuroepithelial (NE) cysts and DV-patterned organoids from single human-induced pluripotent stem cells (hiPSCs). Rather than being embedded within a matrix, hiPSCs undergo a 5-day differentiation process in medium containing soluble extracellular matrix and are allowed to self-organize into 3D cysts with defined central lumen structures that express early neuroepithelial markers. Moreover, upon stimulation with sonic hedgehog proteins and all-trans retinoic acid, NE cysts further develop into NE organoids with DV patterning. This rapid generation of patterned NE organoids using simple culture conditions enables mimicking, monitoring, and longitudinal manipulation of NE cell behavior. This straightforward culture system makes NE organoids a tractable model for studying neural stem cell self-organization and early neural tube developmental events.

11.
Adv Healthc Mater ; : e2400472, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809180

RESUMEN

Synthetic hydrogels provide controllable 3D environments, which can be used to study fundamental biological phenomena. The growing body of evidence that cell behavior depends upon hydrogel stress relaxation creates a high demand for hydrogels with tissue-like viscoelastic properties. Here, a unique platform of synthetic polyethylene glycol (PEG) hydrogels in which star-shaped PEG molecules are conjugated with alendronate and/or RGD peptides, attaining modifiable degradability as well as flexible cell adhesion, is created. Novel reversible ionic interactions between alendronate and calcium phosphate nanoparticles, leading to versatile viscoelastic properties with varying initial elastic modulus and stress relaxation time, are identified. This new crosslinking mechanism provides shear-thinning properties resulting in differential cellular responses between cancer cells and stem cells. The novel hydrogel system is an improved design to the other ionic crosslink platforms and opens new avenues for the development of pathologically relevant cancer models, as well as minimally invasive approaches for cell delivery for potential regenerative therapies.

12.
Nat Commun ; 15(1): 487, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216556

RESUMEN

Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/ß-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/ß-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.


Asunto(s)
Nanocables , beta Catenina , Animales , Ratones , Silicio/farmacología , Porosidad , Litio/farmacología , Ácido Silícico/farmacología , Cemento Dental
14.
Biomaterials ; 293: 121982, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640555

RESUMEN

Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.


Asunto(s)
Hepatocitos , Oligopéptidos , Humanos , Colforsina/metabolismo , Colforsina/farmacología , Diferenciación Celular , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/farmacología , Hidrogeles/química
15.
Eur Cell Mater ; 24: 211-23, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23007907

RESUMEN

Pluripotent cells, such as embryonic stem cells (ESCs), divide indefinitely and can differentiate to form mineralised nodules in response to osteogenic supplements. This suggests that they may be used as a cell source for bone replacement strategies. Here, we related the expression of osteogenic and chondrogenic genes in cultures of murine ESCs, marrow stromal cells (MSCs) and calvarial osteoblasts (OBs) cultured under osteogenic conditions to the biochemical composition and quantity of mineral formed. Mineralisation, measured by calcium sequestration, was >2-fold greater in ESC cultures than in either MSCs or OBs. Micro-Raman spectroscopy and spectral mapping revealed a lower mineral-to-matrix ratio and confirmed a more diffuse pattern of mineralisation in ESCs compared to MSCs and OBs. Baseline expression of chondrogenic and osteogenic genes was between 1 and 4 orders of magnitude greater in MSCs and OBs than in ESCs. Osteogenic culture of MSCs and OBs was accompanied by increases in osteogenic gene expression by factors of ~100 compared to only ~10 in ESCs. Consequentially, peak expression of osteogenic and chondrogenic genes was greater in MSCs and OBs than ESCs by factors of 100-1000, despite the fact that mineralisation was more extensive in ESCs than either MSCs or OBs. We also observed significant cell death in ESC nodules. We conclude that the mineralised material observed in cultures of murine ESCs during osteogenic differentiation may accumulate non-specifically, perhaps in necrotic cell layers, and that thorough characterisation of the tissue formed by ESCs must be achieved before these cells can be considered as a cell source for clinical applications.


Asunto(s)
Calcificación Fisiológica , Células Madre Embrionarias/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Animales , Células Cultivadas , Condrogénesis/genética , Femenino , Perfilación de la Expresión Génica , Ratones
16.
Nat Rev Methods Primers ; 2: 98, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37461429

RESUMEN

Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.

17.
Acta Biomater ; 149: 179-188, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35779773

RESUMEN

Successfully replacing damaged cartilage with tissue-engineered constructs requires integration with the host tissue and could benefit from leveraging the native tissue's intrinsic healing capacity; however, efforts are limited by a poor understanding of how cartilage repairs minor defects. Here, we investigated the conditions that foster natural cartilage tissue repair to identify strategies that might be exploited to enhance the integration of engineered/grafted cartilage with host tissue. We damaged porcine articular cartilage explants and using a combination of pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies reveal that integration of damaged cartilage surfaces is not driven by neo-matrix synthesis, but rather local depletion of proteoglycans. ADAMTS4 expression and activity are upregulated in injured cartilage explants, but integration could be reduced by inhibiting metalloproteinase activity with TIMP3. These observations suggest that catabolic enzyme-mediated proteoglycan depletion likely allows existing collagen fibrils to undergo cross-linking, fibrillogenesis, or entanglement, driving integration. Catabolic enzymes are often considered pathophysiological markers of osteoarthritis. Our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions and in osteoarthritis, but could also be harnessed in tissue engineering strategies to mediate repair. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies require graft integration with the surrounding tissue; however, how the native tissue repairs minor injuries is poorly understood. We applied pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies to a porcine cartilage explant model and found that integration of damaged cartilage surfaces is driven by catabolic enzyme-mediated local depletion of proteoglycans. Although catabolic enzymes have been implicated in cartilage destruction in osteoarthritis, our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions. They also suggest that this natural cartilage tissue repair process could be harnessed in tissue engineering strategies to enhance the integration of engineered cartilage with host tissue.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Metaloproteasas/metabolismo , Osteoartritis/patología , Proteoglicanos/metabolismo , Porcinos , Ingeniería de Tejidos
18.
Cell Rep ; 40(9): 111281, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044863

RESUMEN

Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Animales , Diferenciación Celular , Humanos , Inmunidad Innata , Inmunoterapia , Linfocitos , Ratones
19.
Front Cell Dev Biol ; 9: 761871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34820380

RESUMEN

Although understanding how soluble cues direct cellular processes revolutionised the study of cell biology in the second half of the 20th century, over the last two decades, new insights into how mechanical cues similarly impact cell fate decisions has gained momentum. During development, extrinsic cues such as fluid flow, shear stress and compressive forces are essential for normal embryogenesis to proceed. Indeed, both adult and embryonic stem cells can respond to applied forces, but they can also detect intrinsic mechanical cues from their surrounding environment, such as the stiffness of the extracellular matrix, which impacts differentiation and morphogenesis. Cells can detect changes in their mechanical environment using cell surface receptors such as integrins and focal adhesions. Moreover, dynamic rearrangements of the cytoskeleton have been identified as a key means by which forces are transmitted from the extracellular matrix to the cell and vice versa. Although we have some understanding of the downstream mechanisms whereby mechanical cues are translated into changes in cell behaviour, many of the signalling pathways remain to be defined. This review discusses the importance of intrinsic mechanical cues on adult cell fate decisions, the emerging roles of cell surface mechano-sensors and the cytoskeleton in enabling cells to sense its microenvironment, and the role of intracellular signalling in translating mechanical cues into transcriptional outputs. In addition, the contribution of mechanical cues to fundamental processes during embryogenesis such as apical constriction and convergent extension is discussed. The continued development of tools to measure the biomechanical properties of soft tissues in vivo is likely to uncover currently underestimated contributions of these cues to adult stem cell fate decisions and embryogenesis, and may inform on regenerative strategies for tissue repair.

20.
Cell Stem Cell ; 28(9): 1505-1506, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478627

RESUMEN

In this issue of Cell Stem Cell, Tallapragada et al. (2021) present an intestinal organoid culture system for high-throughput live imaging to investigate niche-independent mechanisms of crypt fission. They find that Piezo activity downregulates Lgr5 expression in stretched epithelial cells within inflated organoids, which form multiple new crypts upon collapse.


Asunto(s)
Células Epiteliales , Organoides , Recuento de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA