Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(14): e202319157, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339863

RESUMEN

Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.


Asunto(s)
Fibroblastos , Inflamación , Humanos , Fibroblastos/metabolismo , Inflamación/metabolismo , Hipoxia/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(52): 26709-26716, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843903

RESUMEN

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that optimizes the peptide cargo of major histocompatibility class I (MHC-I) molecules and regulates adaptive immunity. It has unusual substrate selectivity for length and sequence, resulting in poorly understood effects on the cellular immunopeptidome. To understand substrate selection by ERAP1, we solved 2 crystal structures of the enzyme with bound transition-state pseudopeptide analogs at 1.68 Å and 1.72 Å. Both peptides have their N terminus bound at the active site and extend away along a large internal cavity, interacting with shallow pockets that can influence selectivity. The longer peptide is disordered through the central region of the cavity and has its C terminus bound in an allosteric pocket of domain IV that features a carboxypeptidase-like structural motif. These structures, along with enzymatic and computational analyses, explain how ERAP1 can select peptides based on length while retaining the broad sequence-specificity necessary for its biological function.

3.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163832

RESUMEN

Recent studies have linked the activity of ER aminopeptidase 2 (ERAP2) to increased efficacy of immune-checkpoint inhibitor cancer immunotherapy, suggesting that pharmacological inhibition of ERAP2 could have important therapeutic implications. To explore the effects of ERAP2 inhibition on the immunopeptidome of cancer cells, we treated MOLT-4 T lymphoblast leukemia cells with a recently developed selective ERAP2 inhibitor, isolated Major Histocompatibility class I molecules (MHCI), and sequenced bound peptides by liquid chromatography tandem mass spectrometry. Inhibitor treatment induced significant shifts on the immunopeptidome so that more than 20% of detected peptides were either novel or significantly upregulated. Most of the inhibitor-induced peptides were 9mers and had sequence motifs and predicted affinity consistent with being optimal ligands for at least one of the MHCI alleles carried by MOLT-4 cells. Such inhibitor-induced peptides could serve as triggers for novel cytotoxic responses against cancer cells and synergize with the therapeutic effect of immune-checkpoint inhibitors.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Péptidos/inmunología , Ácidos Fosfínicos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Aminopeptidasas , Presentación de Antígeno , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Humanos , Ácidos Fosfínicos/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Espectrometría de Masas en Tándem
4.
Molecules ; 27(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35209031

RESUMEN

In this report, a synthetic protocol for the preparation of phosphinic dipeptides of type 5 is presented. These compounds serve as valuable building blocks for the development of highly potent phosphinopeptidic inhibitors of medicinally relevant Zn-metalloproteases and aspartyl proteases. The proposed method is based on the tandem esterification of α-aminophosphinic and acrylic acids under silylating conditions in order to subsequently participate in a P-Michael reaction. The scope of the transformation was investigated by using a diverse set of readily available acrylic acids and (R)-α-aminophosphinic acids, and high yields were achieved in all cases. In most examples reported herein, the isolation of biologically relevant (R,S)-diastereoisomers became possible by simple crystallization from the crude products, thus enhancing the operational simplicity of the proposed method. Finally, functional groups corresponding to acidic or basic natural amino acids are also compatible with the reaction conditions. Based on the above, we expect that the practicality of the proposed protocol will facilitate the discovery of pharmacologically useful bioactive phosphinic peptides.


Asunto(s)
Acrilatos/química , Dipéptidos , Ácidos Fosfínicos/química , Dipéptidos/síntesis química , Dipéptidos/química , Esterificación
5.
J Biol Chem ; 295(21): 7193-7210, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32184355

RESUMEN

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims antigenic peptide precursors to generate mature antigenic peptides for presentation by major histocompatibility complex class I (MHCI) molecules and regulates adaptive immune responses. ERAP1 has been proposed to trim peptide precursors both in solution and in preformed MHCI-peptide complexes, but which mode is more relevant to its biological function remains controversial. Here, we compared ERAP1-mediated trimming of antigenic peptide precursors in solution or when bound to three MHCI alleles, HLA-B*58, HLA-B*08, and HLA-A*02. For all MHCI-peptide combinations, peptide binding onto MHCI protected against ERAP1-mediated trimming. In only a single MHCI-peptide combination, trimming of an HLA-B*08-bound 12-mer progressed at a considerable rate, albeit still slower than in solution. Results from thermodynamic, kinetic, and computational analyses suggested that this 12-mer is highly labile and that apparent on-MHC trimming rates are always slower than that of MHCI-peptide dissociation. Both ERAP2 and leucine aminopeptidase, an enzyme unrelated to antigen processing, could trim this labile peptide from preformed MHCI complexes as efficiently as ERAP1. A pseudopeptide analogue with high affinity for both HLA-B*08 and the ERAP1 active site could not promote the formation of a ternary ERAP1/MHCI/peptide complex. Similarly, no interactions between ERAP1 and purified peptide-loading complex were detected in the absence or presence of a pseudopeptide trap. We conclude that MHCI binding protects peptides from ERAP1 degradation and that trimming in solution along with the dynamic nature of peptide binding to MHCI are sufficient to explain ERAP1 processing of antigenic peptide precursors.


Asunto(s)
Aminopeptidasas/química , Antígeno HLA-A2/química , Antígenos HLA-B/química , Antígenos de Histocompatibilidad Menor/química , Oligopéptidos/química , Aminopeptidasas/genética , Dominio Catalítico , Antígeno HLA-A2/genética , Antígenos HLA-B/genética , Humanos , Antígenos de Histocompatibilidad Menor/genética
6.
Angew Chem Int Ed Engl ; 60(33): 18272-18279, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096148

RESUMEN

Activity-based probes enable discrimination between the active enzyme and its inactive or inactivated counterparts. Since metalloproteases catalysis is non-covalent, activity-based probes targeting them have been systematically developed by decorating reversible inhibitors with photo-crosslinkers. By exploiting two types of ligand-guided chemistry, we identified novel activity-based probes capable of covalently modifying the active site of matrix metalloproteases (MMPs) without any external trigger. The ability of these probes to label recombinant MMPs was validated in vitro and the identity of the main labelling sites within their S3 ' region unambiguously assigned. We also demonstrated that our affinity probes can react with rhMMP12 at nanogram scale (that is, at 0.07 % (w/w)) in complex proteomes. Finally, this ligand-directed chemistry was successfully applied to label active MMP-12 secreted by eukaryote cells. We believe that this approach could be transferred more widely to many other metalloproteases, thus contributing to tackle their unresolved proteomic profiling in vivo.

7.
Molecules ; 25(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333919

RESUMEN

The chiral N1-Cbz, N2-H derivative of the piperazic acid monomer is a valuable building block in the total synthesis of natural products, comprising this nonproteinogenic amino acid. In that context, we wish to report an improved synthetic protocol for the synthesis of both (3R)- and (3S)-piperazic acids bearing the carboxybenzyl protecting group (Cbz) selectively at the N1 position. Our method builds on previously reported protocols, circumventing their potential shortcomings, and optimizing the ultimate selective deprotection at the N2 position, thus, offering an efficient and reproducible pathway to suitably modified piperazates in high optical purity.


Asunto(s)
Piridazinas/química , Benceno/química , Estereoisomerismo
8.
Cancer Immunol Immunother ; 68(8): 1245-1261, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31222486

RESUMEN

The efficacy of cancer immunotherapy, including treatment with immune-checkpoint inhibitors, often is limited by ineffective presentation of antigenic peptides that elicit T-cell-mediated anti-tumor cytotoxic responses. Manipulation of antigen presentation pathways is an emerging approach for enhancing the immunogenicity of tumors in immunotherapy settings. ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that trims peptides as part of the system that generates peptides for binding to MHC class I molecules (MHC-I). We hypothesized that pharmacological inhibition of ERAP1 in cells could regulate the cellular immunopeptidome. To test this hypothesis, we treated A375 melanoma cells with a recently developed potent ERAP1 inhibitor and analyzed the presented MHC-I peptide repertoire by isolating MHC-I, eluting bound peptides, and identifying them using capillary chromatography and tandem mass spectrometry (LC-MS/MS). Although the inhibitor did not reduce cell-surface MHC-I expression, it induced qualitative and quantitative changes in the presented peptidomes. Specifically, inhibitor treatment altered presentation of about half of the total 3204 identified peptides, including about one third of the peptides predicted to bind tightly to MHC-I. Inhibitor treatment altered the length distribution of eluted peptides without change in the basic binding motifs. Surprisingly, inhibitor treatment enhanced the average predicted MHC-I binding affinity, by reducing presentation of sub-optimal long peptides and increasing presentation of many high-affinity 9-12mers, suggesting that baseline ERAP1 activity in this cell line is destructive for many potential epitopes. Our results suggest that chemical inhibition of ERAP1 may be a viable approach for manipulating the immunopeptidome of cancer.


Asunto(s)
Aminopeptidasas/metabolismo , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacología , Vacunas contra el Cáncer/inmunología , Epítopos de Linfocito T/metabolismo , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Antígenos de Histocompatibilidad Menor/metabolismo , Péptidos/metabolismo , Inhibidores de Proteasas/farmacología , Linfocitos T Citotóxicos/inmunología , Aminopeptidasas/antagonistas & inhibidores , Presentación de Antígeno , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunogenicidad Vacunal , Activación de Linfocitos , Terapia Molecular Dirigida , Péptidos/genética , Péptidos/inmunología , Unión Proteica
9.
Biochemistry ; 56(10): 1546-1558, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28218509

RESUMEN

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that is important for the generation of antigenic epitopes and major histocompatibility class I-restricted adaptive immune responses. ERAP1 processes a vast variety of different peptides but still shows length and sequence selectivity, although the mechanism behind these properties is poorly understood. X-ray crystallographic analysis has revealed that ERAP1 can assume at least two distinct conformations in which C-terminal domain IV is either proximal or distal to active site domain II. To improve our understanding of the role of this conformational change in the catalytic mechanism of ERAP1, we used site-directed mutagenesis to perturb key salt bridges between domains II and IV. Enzymatic analysis revealed that these mutations, although located away from the catalytic site, greatly reduce the catalytic efficiency and change the allosteric kinetic behavior. The variants were more efficiently activated by small peptides and bound a competitive inhibitor with weaker affinity and faster dissociation kinetics. Molecular dynamics analysis suggested that the mutations affect the conformational distribution of ERAP1, reducing the population of closed states. Small-angle X-ray scattering indicated that both the wild type and the ERAP1 variants are predominantly in an open conformational state in solution. Overall, our findings suggest that electrostatic interactions between domains II and IV in ERAP1 are crucial for driving a conformational change that regulates the structural integrity of the catalytic site. The extent of domain opening in ERAP1 probably underlies its specialization for antigenic peptide precursors and should be taken into account in inhibitor development efforts.


Asunto(s)
Aminopeptidasas/química , Retículo Endoplásmico/enzimología , Antígenos de Histocompatibilidad Menor/química , Mutación , Secuencia de Aminoácidos , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Biocatálisis , Dominio Catalítico , Línea Celular , Clonación Molecular , Expresión Génica , Humanos , Cinética , Lepidópteros/citología , Lepidópteros/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Simulación de Dinámica Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sales (Química)/química , Electricidad Estática , Termodinámica
10.
J Immunol ; 195(6): 2842-51, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26259583

RESUMEN

Aminopeptidases that generate antigenic peptides influence immunodominance and adaptive cytotoxic immune responses. The mechanisms that allow these enzymes to efficiently process a vast number of different long peptide substrates are poorly understood. In this work, we report the structure of insulin-regulated aminopeptidase, an enzyme that prepares antigenic epitopes for cross-presentation in dendritic cells, in complex with an antigenic peptide precursor analog. Insulin-regulated aminopeptidase is found in a semiclosed conformation with an extended internal cavity with limited access to the solvent. The N-terminal moiety of the peptide is located at the active site, positioned optimally for catalysis, whereas the C-terminal moiety of the peptide is stabilized along the extended internal cavity lodged between domains II and IV. Hydrophobic interactions and shape complementarity enhance peptide affinity beyond the catalytic site and support a limited selectivity model for antigenic peptide selection that may underlie the generation of complex immunopeptidomes.


Asunto(s)
Antígenos/inmunología , Cistinil Aminopeptidasa/ultraestructura , Epítopos/inmunología , Animales , Dominio Catalítico/genética , Línea Celular , Cristalografía por Rayos X , Cistinil Aminopeptidasa/metabolismo , Células Dendríticas/inmunología , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Insectos/citología , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica/fisiología
11.
Ann Rheum Dis ; 75(5): 916-23, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26130142

RESUMEN

OBJECTIVE: Human leucocyte antigen (HLA)-B27 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly associated with ankylosing spondylitis (AS). ERAP1 is a key aminopeptidase in HLA class I presentation and can potentially alter surface expression of HLA-B27 free heavy chains (FHCs). We studied the effects of ERAP1 silencing/inhibition/variations on HLA-B27 FHC expression and Th17 responses in AS. METHODS: Flow cytometry was used to measure surface expression of HLA class I in peripheral blood mononuclear cells (PBMCs) from patients with AS carrying different ERAP1 genotypes (rs2287987, rs30187 and rs27044) and in ERAP1-silenced/inhibited/mutated HLA-B27-expressing antigen presenting cells (APCs). ERAP1-silenced/inhibited APCs were cocultured with KIR3DL2CD3ε-reporter cells or AS CD4+ T cells. Th17 responses of AS CD4+ T cells were measured by interleukin (IL)-17A ELISA and Th17 intracellular cytokine staining. FHC cell surface expression and Th17 responses were also measured in AS PBMCs following ERAP1 inhibition. RESULTS: The AS-protective ERAP1 variants, K528R and Q730E, were associated with reduced surface FHC expression by monocytes from patients with AS and HLA-B27-expressing APCs. ERAP1 silencing or inhibition in APCs downregulated HLA-B27 FHC surface expression, reduced IL-2 production by KIR3DL2CD3ε-reporter cells and suppressed the Th17 expansion and IL-17A secretion by AS CD4+ T cells. ERAP1 inhibition of AS PBMCs reduced HLA class I FHC surface expression by monocytes and B cells, and suppressed Th17 expansion. CONCLUSIONS: ERAP1 activity determines surface expression of HLA-B27 FHCs and potentially promotes Th17 responses in AS through binding of HLA-B27 FHCs to KIR3DL2. Our data suggest that ERAP1 inhibition has potential for AS treatment.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Cadenas Pesadas de Inmunoglobulina/metabolismo , Espondilitis Anquilosante/inmunología , Células Th17/inmunología , Adulto , Aminopeptidasas/genética , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Técnicas de Cocultivo , Femenino , Silenciador del Gen , Genotipo , Antígeno HLA-B27/metabolismo , Humanos , Interleucina-2/biosíntesis , Masculino , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor , Monocitos/inmunología , Índice de Severidad de la Enfermedad
12.
Bioconjug Chem ; 27(10): 2407-2417, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27564088

RESUMEN

In designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor. The impact of linker length has been also explored. The crystallographic structure of one tracer in complex with MMP-12 has been obtained, providing the first crystal structure of a Cy5.5-derived probe and confirming that the binding of the targeting moiety is unaffected. MMP-12 remains the tracers' privileged target, as attested by their affinity selectivity profile evaluated in solution toward a panel of 12 metalloproteases. In vivo assessment of four selected probes has highlighted not only the impact of the dye structure but also that of the linker length on the probes' blood clearance rates and their biodistributions. These experiments have also provided valuable data on the stability of the dye moieties in vivo. This has permitted the identification of one probe, which combines favorable binding to MMP-12 in solution and on cells with optimized in vivo performance including blood clearance rate suitable for short-time imaging. Through this series of tracers, we have identified various critical factors modulating the tracers' in vivo behavior, which is both useful for the development and optimization of MMP-12 selective radiolabeled tracers and informative for the design of fluorescent probes in general.


Asunto(s)
Metaloproteinasa 12 de la Matriz/análisis , Imagen Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Animales , Carbocianinas , Técnicas de Química Sintética , Cristalografía por Rayos X , Células HeLa , Humanos , Metaloproteinasa 12 de la Matriz/química , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Sondas Moleculares/farmacocinética , Óptica y Fotónica/métodos , Péptidos/química , Distribución Tisular
13.
Proc Natl Acad Sci U S A ; 110(49): 19890-5, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24248368

RESUMEN

Intracellular aminopeptidases endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2), and as well as insulin-regulated aminopeptidase (IRAP) process antigenic epitope precursors for loading onto MHC class I molecules and regulate the adaptive immune response. Their activity greatly affects the antigenic peptide repertoire presented to cytotoxic T lymphocytes and as a result can regulate cytotoxic cellular responses contributing to autoimmunity or immune evasion by viruses and cancer cells. Therefore, pharmacological regulation of their activity is a promising avenue for modulating the adaptive immune response with possible applications in controlling autoimmunity, in boosting immune responses to pathogens, and in cancer immunotherapy. In this study we exploited recent structural and biochemical analysis of ERAP1 and ERAP2 to design and develop phosphinic pseudopeptide transition state analogs that can inhibit this family of enzymes with nM affinity. X-ray crystallographic analysis of one such inhibitor in complex with ERAP2 validated our design, revealing a canonical mode of binding in the active site of the enzyme, and highlighted the importance of the S2' pocket for achieving inhibitor potency. Antigen processing and presentation assays in HeLa and murine colon carcinoma (CT26) cells showed that these inhibitors induce increased cell-surface antigen presentation of transfected and endogenous antigens and enhance cytotoxic T-cell responses, indicating that these enzymes primarily destroy epitopes in those systems. This class of inhibitors constitutes a promising tool for controlling the cellular adaptive immune response in humans by modulating the antigen processing and presentation pathway.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Presentación de Antígeno/inmunología , Modelos Moleculares , Linfocitos T Citotóxicos/inmunología , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Animales , Presentación de Antígeno/efectos de los fármacos , Sitios de Unión/inmunología , Línea Celular Tumoral , Cristalografía por Rayos X , Cistinil Aminopeptidasa/metabolismo , Células HeLa , Humanos , Ratones , Antígenos de Histocompatibilidad Menor , Estructura Molecular , Ácidos Fosfínicos , Ingeniería de Proteínas , Linfocitos T Citotóxicos/efectos de los fármacos
14.
Top Curr Chem ; 360: 1-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25370521

RESUMEN

The development of transition-state analogs is a major objective in enzymology, not only for developing potent inhibitors of enzymes but also for dissecting enzyme catalytic mechanisms. Phosphinic peptides, which share closed structural similarities with the transition-state of peptide substrate upon hydrolysis, have thus been considered for identifying potent inhibitors of proteases. Focusing on the zinc-proteases family, this review presents the most important synthetic efforts performed to obtain the desired compounds. Crystal structures of the phosphinic peptides in interaction with their zinc-protease targets are reported to illustrate the structural features which may explain the potency of these compounds and how they contribute to uncover key enzyme catalytic residues. Based on a remarkable metabolic stability, phosphinic peptides can be used to probe the in vivo function of zinc-proteases. Progress on chemistry and better understanding on the functional roles of zinc-proteases should allow transferring these compounds from shelf to clinic.


Asunto(s)
Metaloproteasas/antagonistas & inhibidores , Péptidos/química , Ácidos Fosfínicos/química , Inhibidores de Proteasas/química , Zinc/química , Animales , Bacillus/química , Bacillus/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Metaloproteasas/química , Modelos Moleculares , Péptidos/síntesis química , Plasmodium falciparum/química , Plasmodium falciparum/enzimología , Inhibidores de Proteasas/síntesis química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
15.
Chemistry ; 21(8): 3278-89, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25641366

RESUMEN

A P-C bond-forming reaction between silyl phosphonites and Morita-Baylis-Hillman acetates (MBHAs) is explored as a general alternative towards medicinally relevant ß-carboxyphosphinic structural motifs. Conversion rates of diversely substituted MBHAs to phosphinic acids 9 or 14 that were recorded by using (31) P NMR spectroscopy revealed unexpected reactivity differences between ester and nitrile derivatives. These kinetic profiles and DFT calculations support a mechanistic scenario in which observed differences can be explained from the "lateness" of transition states. In addition, we provide experimental evidence suggesting that enolates due to initial P-Michael addition are not formed. Based on the proposed mechanistic scenario in conjunction with DFT calculations, an interpretation of the E/Z stereoselectivity differences between ester and nitriles is proposed. Synthetic opportunities stemming from this transformation are presented, which deal with the preparation of several synthetically capricious phosphinic building blocks, whose access through the classical P-Michael synthetic route is not straightforward.

16.
J Immunol ; 189(5): 2383-92, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22837489

RESUMEN

Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) cooperate to trim antigenic peptide precursors for loading onto MHC class I molecules and help regulate the adaptive immune response. Common coding single nucleotide polymorphisms in ERAP1 and ERAP2 have been linked with predisposition to human diseases ranging from viral and bacterial infections to autoimmunity and cancer. It has been hypothesized that altered Ag processing by these enzymes is a causal link to disease etiology, but the molecular mechanisms are obscure. We report in this article that the common ERAP2 single nucleotide polymorphism rs2549782 that codes for amino acid variation N392K leads to alterations in both the activity and the specificity of the enzyme. Specifically, the 392N allele excises hydrophobic N-terminal residues from epitope precursors up to 165-fold faster compared with the 392K allele, although both alleles are very similar in excising positively charged N-terminal amino acids. These effects are primarily due to changes in the catalytic turnover rate (k(cat)) and not in the affinity for the substrate. X-ray crystallographic analysis of the ERAP2 392K allele suggests that the polymorphism interferes with the stabilization of the N terminus of the peptide both directly and indirectly through interactions with key residues participating in catalysis. This specificity switch allows the 392N allele of ERAP2 to supplement ERAP1 activity for the removal of hydrophobic N-terminal residues. Our results provide mechanistic insight to the association of this ERAP2 polymorphism with disease and support the idea that polymorphic variation in Ag processing enzymes constitutes a component of immune response variability in humans.


Asunto(s)
Aminopeptidasas/genética , Presentación de Antígeno/inmunología , Retículo Endoplásmico/enzimología , Cambio de Clase de Inmunoglobulina/inmunología , Polimorfismo de Nucleótido Simple/inmunología , Secuencia de Aminoácidos , Presentación de Antígeno/genética , Cristalografía por Rayos X , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Activación Enzimática/genética , Activación Enzimática/inmunología , Variación Genética/inmunología , Células HeLa , Humanos , Cambio de Clase de Inmunoglobulina/genética , Datos de Secuencia Molecular , Especificidad por Sustrato/genética , Especificidad por Sustrato/inmunología
17.
Chembiochem ; 14(1): 107-14, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23203916

RESUMEN

A photoaffinity probe based on the scaffold of a potent broad-spectrum phosphinic peptide inhibitor of matrix metalloproteinases (MMPs) has been developed. A photolabile diazirine group for covalent modification of MMP active forms was incorporated at the P(1) ' position, and a tritium radioactive label for the sensitive detection of MMP covalent adducts by radioimaging was attached. The probe was characterized on seven catalytic domains of human MMPs (MMP-2, -3, -8, -9, -12, -13 and -14) and was found to display nanomolar affinities towards this set of MMPs, covalently modifying them with crosslinking yields varying from 12 to 58 %, thus leading to highly sensitive detection of these MMPs. In a complex proteome complemented with four recombinant MMPs (MMP-2, -9, -12 and -13), this probe enabled their simultaneous detection with a threshold of few femtomoles and low background labelling. Those properties should make this new pan-activity-based MMP probe a valuable tool for the detection of MMP active forms from biological fluids or tissue extracts.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Técnicas de Sonda Molecular , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/metabolismo , Azidas/química , Azirinas/química , Dominio Catalítico , Reactivos de Enlaces Cruzados/síntesis química , Humanos , Luz , Metaloproteinasas de la Matriz/química , Etiquetas de Fotoafinidad/síntesis química
18.
Org Lett ; 25(36): 6623-6627, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669620

RESUMEN

A highly diastereoselective P-Michael addition of chiral aminophosphinic acids to achiral acrylates has been developed, leading to phosphinic dipeptide isosteres in high yields and dr of up to >50:1. The method allows for the diastereoselective preparation of target compounds without the need for chiral auxiliaries or P-chiral substrates. A possible mechanistic explanation involves a domino chirality transfer from the aminophosphinic acid to the P center, amplified by a crucial benzhydryl ester group, and then to the α-carbon.

19.
ACS Med Chem Lett ; 13(2): 218-224, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178178

RESUMEN

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is an intracellular enzyme involved in the processing of antigenic peptides intended for presentation by major histocompatibility complex class I (MHCI) molecules. Because of its role in regulating immune responses, ERAP2 is an emerging pharmacological target. Phosphinic pseudopeptides are potent transition-state analogue inhibitors of ERAP2. Previous structure-activity studies have revealed a complex but ambiguous relationship between the occupation of putative specificity pockets and the inhibitor efficacy. To address these problems, we solved crystal structures of ERAP2 in complex with two phosphinic pseudotripeptide inhibitors. Both compounds are found in the catalytic site in a canonical orientation for transition-state analogues and utilize the S1 and S2' pockets in a similar fashion. Strikingly, their P1' side chains exhibit different orientations and make interactions with distinct shallow pockets near the ERAP2 active site. These structures suggest that S1' pocket usage in ERAP2 may be inhibitor-dependent and constitute useful starting templates for the further optimization of this class of compounds.

20.
ACS Pharmacol Transl Sci ; 5(12): 1228-1253, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36524013

RESUMEN

Phosphinic peptides constitute an important class of bioactive compounds that have found a wide range of applications in the field of biology and pharmacology of Zn-metalloproteases, the largest family of proteases in humans. They are designed to mimic the structure of natural substrates during their proteolysis, thus acting as mechanism-based, transition state analogue inhibitors. A combination of electrostatic interactions between the phosphinic acid group and the Zn cation as well as optimal noncovalent enzyme-ligand interactions can result in both high binding affinity for the desired target and selectivity against other proteases. Due to these unique properties, phosphinic peptides have been mainly employed as tool compounds for (a) the purposes of rational drug design by serving as ligands in X-ray crystal structures of target enzymes and allowing the identification of crucial interactions that govern optimal molecular recognition, and (b) the delineation of biological pathways where Zn-metalloproteases are key regulators. For the latter objective, inhibitors of the phosphinopeptidic type have been used either unmodified or after being transformed to probes of various types, thus expanding the arsenal of functional tools available to researchers. The aim of this review is to summarize all recent research achievements in which phosphinic peptides have played a central role as tool compounds in the understanding of the mechanism and biological functions of Zn-metalloproteases in both health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA