Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 131(4): 778-784, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38478986

RESUMEN

Recent studies have established the moment-to-moment turnover of the blood-oxygen-level-dependent signal (TBOLD) at resting state as a key measure of local cortical brain function. Here, we sought to extend that line of research by evaluating TBOLD in 70 cortical areas with respect to corresponding brain volume, age, and sex across the lifespan in 1,344 healthy participants including 633 from the Human Connectome Project (HCP)-Development cohort (294 males and 339 females, age range 8-21 yr) and 711 healthy participants from HCP-Aging cohort (316 males and 395 females, 36-90 yr old). In both groups, we found that 1) TBOLD increased with age, 2) volume decreased with age, and 3) TBOLD and volume were highly significantly negatively correlated, independent of age. The inverse association between TBOLD and volume was documented in nearly all 70 brain areas and for both sexes, with slightly stronger associations documented for males. The strong correspondence between TBOLD and volume across age and sex suggests a common influence such as chronic neuroinflammation contributing to reduced cortical volume and increased TBOLD across the lifespan.NEW & NOTEWORTHY We report a significant negative association between resting functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent (BOLD) signal turnover (TBOLD) and cortical gray matter volume across the lifespan, such that TBOLD increased whereas volume decreased. We attribute this association to a hypothesized chronic, low-grade neuroinflammation, probably induced by various neurotropic pathogens, including human herpes viruses known to be dormant in the brain in a latent state and reactivated by stress, fever, and various environmental exposures, such as ultraviolet light.


Asunto(s)
Conectoma , Acoplamiento Neurovascular , Masculino , Femenino , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Preescolar , Longevidad , Sustancia Gris/diagnóstico por imagen , Envejecimiento , Enfermedades Neuroinflamatorias , Imagen por Resonancia Magnética/métodos , Encéfalo , Conectoma/métodos , Oxígeno
2.
J Neurophysiol ; 130(1): 117-122, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314080

RESUMEN

We assessed changes in gray matter volume of 35 cerebrocortical regions in a large sample of participants in the Human Connectome Project-Development (n = 649, 6-21 yr old, 299 males and 350 females). The same protocol for MRI data acquisition and processing was used for all brains. Volumes of individual areas were adjusted for estimated total intracranial volume and linearly regressed against age. We found changes of volume with age that were distinct among areas and consistent between sexes, as follows: 1) the overall cortical volume decreased significantly with age; 2) the volumes of 30/35 areas also decreased significantly with age; 3) the volumes of the hippocampal cortex (hippocampus, parahippocampal, and entorhinal) and that of pericalcarine cortex did not show significant age-related changes; and 4) the volume of the temporal pole increased significantly with age. The rates of volume reduction with age did not differ significantly between the two sexes, except for areas of the parietal lobe where males showed statistically significantly higher volume reduction with age than females. These results, obtained from a large sample of male and female participants, and acquired and processed in the same way, confirm previous findings, offer new insights into region-specific age-related changes in cortical brain volume, and are discussed in the context of the hypothesis that reduction in cortical volume may be partly due to a background, low-grade chronic neuroinflammation inflicted by common viruses residing latently in the brain, notably viruses of the human herpes family.NEW & NOTEWORTHY We report mixed effects of age on cortical gray matter volume during development in a large sample of 649 participants studied in an identical manner (6-21 yr old, 299 males, 350 females). Volumes of 30/35 cortical areas decreased with age, temporal pole increased, and pericalcarine and hippocampal cortex (hippocampus, parahippocampal, and entorhinal) did not change. These findings were very similar in both sexes and provide a solid base for assessing region-specific cortical changes during development.


Asunto(s)
Conectoma , Sustancia Gris , Humanos , Masculino , Femenino , Sustancia Gris/diagnóstico por imagen , Encéfalo , Lóbulo Temporal , Lóbulo Parietal , Imagen por Resonancia Magnética
3.
J Neurophysiol ; 129(4): 894-899, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36922162

RESUMEN

It is known that brain volume decreases with age. Here, we assessed the rate of this decrease in gray matter volume of 35 cortical regions in a large sample of healthy participants (n = 712, age range 36-90 yr) of the Human Connectome Project-Aging. We evaluated the difference in this rate between men (n = 316) and women (n = 396) and found that the volumes of cortical areas decreased by an average of 5.25%/decade, with the highest rate of decrease observed in the rostral anterior cingulate cortex (7.28%/decade). The rate of decrease was higher in men than in women in general and in 30/35 (85.7%) areas in particular, involving most prominently the cingulate lobe. These findings could serve as a normative reference for clinical conditions that manifest with abnormal brain atrophy.NEW & NOTEWORTHY This study showed an overall decrease of cortical gray matter with age but with different rates of volume reduction in different areas, with smaller decrease rates in women than in men. The highest volume reduction rate was observed for the rostral anterior cingulate cortex, an area linked to depression. These findings could serve as a normative reference for clinical conditions that manifest with abnormal brain atrophy.


Asunto(s)
Sustancia Gris , Imagen por Resonancia Magnética , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Envejecimiento , Giro del Cíngulo/diagnóstico por imagen , Atrofia/patología , Encéfalo
4.
J Neurophysiol ; 130(5): 1303-1308, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850792

RESUMEN

We assessed changes in gray matter volume (GMV) of nine subcortical regions (accumbens, amygdala, brainstem, caudate, cerebellar cortex, pallidum, putamen, thalamus, and ventral diencephalon) across the lifespan in a large sample of participants in the Human Connectome Project (n = 2,458, 5-90 yr old, 1,113 males and 1,345 females). 3T MRI data were acquired using a harmonized protocol and were processed in an identical way for all brains. GMVs of individual regions were adjusted for estimated total intracranial volume and regressed against age. We found highly statistically significant changes in GMV with age (P < 0.001) that were distinct among areas and mostly consistent between sexes, as follows. 1) The GMVs of accumbens, caudate, putamen, and cerebellum decreased with age in a linear fashion. The rate of decrease was steeper in males than in females for all regions. 2) The GMVs of the amygdala, pallidum, thalamus, ventral diencephalon, and brainstem changed with age in a quadratic fashion, i.e., increasing first and decreasing afterward. The estimated age at the peak (vertex) of the parabola was 51.8 yr for the brainstem and 28.0-37.9 yr for the other regions. The peak occurred earlier in males than in females, by an average of 8 yr, with the exception of the brainstem, where the age at the peak was very similar in both sexes. These results confirm previous findings and offer new insights into region-specific age-related changes in subcortical brain GMVs.NEW & NOTEWORTHY We report mixed effects of age on subcortical grey matter volume (GMV) during lifespan (n = 2458, 5-90 yr old, 1113 male, 1345 female). Striatal and cerebellar GMVs decreased linearly with age, more steeply in males. In contrast, GMVs of the amygdala, pallidum, thalamus, ventral diencephalon, and brainstem changed in a quadratic fashion, increasing first and decreasing afterward, with males peaking earlier than females in all regions but the brainstem where they peaked at nearly the same time.


Asunto(s)
Conectoma , Sustancia Gris , Humanos , Masculino , Femenino , Sustancia Gris/diagnóstico por imagen , Longevidad , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Imagen por Resonancia Magnética/métodos
5.
J Neurophysiol ; 129(4): 963-967, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37010135

RESUMEN

Previous studies have shown that synchronous neural interactions (SNIs) underlying healthy brain function can be readily distinguished from neural anomalies associated with diseases including dementia; however, it is imperative to identify biomarkers that facilitate early identification of individuals at risk for cognitive decline before the onset of clinical symptoms. Here, we evaluated whether variation in brain function, controlling for age, corresponds with subtle decrements in cognitive performance in cognitively healthy women. A total of 251 women (age range 24-102 yr) who performed above established cutoffs on the Montreal cognitive assessment (MoCA) also underwent a task-free magnetoencephalography scan from which SNIs were computed. The results demonstrated that increased SNI was significantly associated with decreased cognitive performance (r2 = 0.923, P = 0.009), controlling for age. Compared with the lowest performers with normal cognition (MoCA = 26), SNI of the highest performers (MoCA = 30) was associated with decorrelation primarily in the right anterior temporal cortex region, with additional (weaker) foci in left anterior temporal cortex, right posterior temporal cortex, and cerebellum. The findings highlight the relevance of neural network decorrelation on cognitive functioning and suggest that subtle increases in SNI may presage future cognitive impairment.NEW & NOTEWORTHY This study in cognitively healthy women showed that decreased cognitive performance is associated with increased neural network correlations, particularly involving the temporal cortices. As healthy brain function relies on dynamic neural network communication, these findings suggest that subtle increases in correlated neural network activity may be a useful early indicator of decrements in cognitive function.


Asunto(s)
Disfunción Cognitiva , Magnetoencefalografía , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Magnetoencefalografía/métodos , Cognición , Corteza Cerebral , Lóbulo Temporal
6.
J Neurophysiol ; 128(2): 395-404, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792497

RESUMEN

Previous resting-state functional magnetic resonance imaging (fMRI) studies have shown that the strength of local neural interactions decreases with distance. Here, we extend that line of research to evaluate effects of sex and age on local cortical circuitry in six cortical areas (superior frontal, precentral, postcentral, superior parietal, inferior parietal, and lateral occipital) using data acquired from 1,054 healthy young adults who participated in the Human Connectome Project. We confirmed previous findings that the strength of zero-lag correlations between prewhitened, resting-state, blood level oxygenation-dependent (BOLD) fMRI time series decreased with distance locally and documented that the rate of decrease with distance (spatial steepness) 1) was progressively lower from anterior to posterior areas, 2) was greater in women, especially in anterior areas, 3) increased with age, particularly for women, 4) was significantly correlated with percent inhibition, and 5) was positively and highly significantly correlated with pattern comparison processing speed (PCPS). A hierarchical tree clustering analysis of this dependence of PCPS on spatial steepness revealed a differential organization in processing that information between the two hemispheres, namely, a more independent vs. a more integrative processing in the left and right hemispheres, respectively. These findings document sex and age differences in dynamic local cortical interactions and provide evidence that spatial sharpening of these interactions may underlie cognitive processing speed differently organized in the two hemispheres.NEW & NOTEWORTHY Sex and age significantly affect shaping of local cortical interactions that are more limited in women and older brains. The net result is an increase in local spatial steepness of interactions, leading to a reduction of overlap among local ensembles and, hence, a more efficient information processing and an increase in the number of independent local cortical "processors." Remarkably, cognitive processing speed was positively associated with local spatial steepness, in keeping with the reasoning earlier.


Asunto(s)
Encéfalo , Conectoma , Cognición , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
7.
J Neurophysiol ; 127(5): 1221-1229, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35353632

RESUMEN

The regulation of sleep/wake behavior and energy homeostasis is maintained in part by the hypothalamic neuropeptide orexin A (OXA, hypocretin). Reduction in orexin signaling is associated with sleep disorders and obesity, whereas higher lateral hypothalamic (LH) orexin signaling and sensitivity promotes obesity resistance. Similarly, dysregulation of hypothalamic neural networks is associated with onset of age-related diseases, including obesity and several neurological diseases. Despite the association of obesity and aging, and that adult populations are the target for the majority of pharmaceutical and obesity studies, conventional models for neuronal networks utilize embryonic neural cultures rather than adult neurons. Synchronous activity describes correlated changes in neuronal activity between neurons and is a feature of normal brain function, and is a measure of functional connectivity and final output from a given neural structure. Earlier studies show alterations in hypothalamic synchronicity following behavioral perturbations in embryonic neurons obtained from obesity-resistant rats and following application of orexin onto embryonic hypothalamic cultures. Synchronous network dynamics in adult hypothalamic neurons remain largely undescribed. To address this, we established an adult rat hypothalamic culture in multi-electrode-array (MEA) dishes and recorded the field potentials. Then we studied the effect of exogenous orexin on network synchronization of these adult hypothalamic cultures. In addition, we studied the wake promoting effects of orexin in vivo when directly injected into the lateral hypothalamus (LH). Our results showed that the adult hypothalamic cultures are viable for nearly 3 mo in vitro, good quality MEA recordings can be obtained from these cultures in vitro, and finally, that cultured adult hypothalamus is responsive to orexin. These results support that adult rat hypothalamic cultures could be used as a model to study the neural mechanisms underlying obesity. In addition, LH administration of OXA enhanced wakefulness in rats, indicating that OXA enhances wakefulness partly by promoting neural synchrony in the hypothalamus.NEW & NOTEWORTHY This study, for the first time, demonstrates that adult hypothalamic cultures are viable in vitro for a prolonged duration and are electrophysiologically active. In addition, the study shows that orexin enhances neural synchronization in adult hypothalamic cultures.


Asunto(s)
Área Hipotalámica Lateral , Hipotálamo , Animales , Área Hipotalámica Lateral/fisiología , Neuronas/fisiología , Obesidad , Orexinas/farmacología , Ratas
8.
J Neurophysiol ; 128(5): 1307-1311, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36259671

RESUMEN

The moment-to-moment variation of neurovascular coupling in the brain was determined by computing the moment-to-moment turnover of the blood-oxygen-level-dependent signal (TBOLD) at resting state. Here we show that 1) TBOLD is heritable, 2) its heritability estimates are highly correlated between left and right hemispheres, and 3) the degree of its heritability is determined, in part, by the anatomical proximity of the brain areas involved. We also show that the regional distribution of TBOLD in the cortex is significantly associated with that of the vesicular acetylcholine transporter. These findings establish that TBOLD as a key heritable measure of local cortical brain function captured by neurovascular coupling.NEW & NOTEWORTHY Here we show that the sample-to-sample turnover of the resting state fMRI blood-oxygen-level-dependent turnover (TBOLD) is heritable, the left and right hemisphere TBOLD heritabilities are highly correlated, and TBOLD heritability varies among cortical areas. Moreover, we documented that TBOLD is associated with the regional cortical distribution of the vesicular acetylcholine transporter.


Asunto(s)
Acoplamiento Neurovascular , Proteínas de Transporte Vesicular de Acetilcolina , Encéfalo , Imagen por Resonancia Magnética , Mapeo Encefálico , Oxígeno
9.
J Neurophysiol ; 128(6): 1617-1624, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382899

RESUMEN

The neurophysiological mechanisms underlying the development of posttraumatic stress disorder (PTSD) are poorly understood. Here we test a proposal that PTSD symptoms reflect fixed, highly correlated neural networks resulting from massive engagement of sensory inputs and the sequential involvement of those projections to limbic areas. Three-tesla functional magnetic resonance imaging (fMRI) data were acquired at rest in 15 veterans diagnosed with PTSD and 21 healthy control veterans from which zero-lag cross correlations between 50 brain areas (N = 1,225 pairs) were computed and analyzed. The brain areas were assigned to tiers based on the neurocircuitry of successively converging sensory pathways proposed by Jones and Powell (Jones EG, Powell TP. Brain 93: 793-820, 1970). The primary analyses assessed normalized proportional differences in cross correlation strength within and across tiers in veterans with PTSD and control veterans. Compared with control veterans, cross correlation strength was higher in veterans with PTSD, within and across tiers of areas involved in processing sensory inputs, and systematically increased from sensory processing areas to limbic areas. The functional relevance of this hypercorrelation was further documented by the finding that the severity of self-reported PTSD symptomatology was positively associated with higher neural correlations.NEW & NOTEWORTHY The neurophysiological mechanisms underlying the development of PTSD are poorly understood. Here we document that massive engagement of sensory modalities during trauma exposure leads to fixed, hypercorrelated frontal, parietal, temporal, and limbic networks, reflecting the successive integration of salient sensory inputs along the framework of Jones and Powell.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Humanos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Mapeo Encefálico
10.
Exp Brain Res ; 240(7-8): 1967-1977, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35583670

RESUMEN

Blood oxygen level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) is frequently used as a proxy for underlying neural activity. Although this is a plausible assumption for experiments where a task is performed, it may not hold to the same degree for conditions of fMRI recording in a task-free, "resting" state where neural synaptic events are weak and, hence, neurovascular coupling and endothelial vascular factors become more prominent (Hillman Annu Rev Neurosci 37:161-181, 2014, 10.1146/annurev-neuro-071013-014111). Here we investigated the magnitude of change of BOLD in consecutive samples over the acquisition time period (turnover of BOLD, "TBOLD") by first-order differencing of single-voxel BOLD time series acquired in 70 areas of the cerebral cortex of 57 cognitively healthy women in a task-free resting state. More specifically, we evaluated (a) the variation of TBOLD among different cortical areas, (b) its dependence on age, and (c) its dependence on the presence (or absence) of the neuroprotective Human Leukocyte Antigen (HLA) gene DRB1*13 (DRB1*13:02 and DRB1*13:01). We found that TBOLD (a) varied substantially by 2.2 × among cortical areas, being highest in parahippocampal and entorhinal areas and lowest in parietal-occipital areas, (b) was significantly reduced in DRB1*13 carriers across cortical areas (from ~ 15% reduction in orbitofrontal cortex to 2% reduction in cuneus), and (c) increased with age in noncarriers of DRB1*13 but decreased with age in DRB1*13 carriers. These findings document significant dependencies of TBOLD on cortical area location, HLA DRB1*13 and age.


Asunto(s)
Mapeo Encefálico , Acoplamiento Neurovascular , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Femenino , Cadenas HLA-DRB1 , Humanos , Imagen por Resonancia Magnética/métodos , Oxígeno
11.
Exp Brain Res ; 240(5): 1459-1469, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35292842

RESUMEN

We report on the functional connectivity (FC), its intraclass correlation (ICC), and heritability among 70 areas of the human cerebral cortex. FC was estimated as the Pearson correlation between averaged prewhitened Blood Oxygenation Level-Dependent time series of cortical areas in 988 young adult participants in the Human Connectome Project. Pairs of areas were assigned to three groups, namely homotopic (same area in the two hemispheres), ipsilateral (both areas in the same hemisphere), and heterotopic (nonhomotopic areas in different hemispheres). ICC for each pair of areas was computed for six genetic groups, namely monozygotic (MZ) twins, dizygotic (DZ) twins, singleton siblings of MZ twins (MZsb), singleton siblings of DZ twins (DZsb), non-twin siblings (SB), and unrelated individuals (UNR). With respect to FC, we found the following. (a) Homotopic FC was stronger than ipsilateral and heterotopic FC; (b) average FCs of left and right cortical areas were highly and positively correlated; and (c) FC varied in a systematic fashion along the anterior-posterior and inferior-superior dimensions, such that it increased from anterior to posterior and from inferior to superior. With respect to ICC, we found the following. (a) Homotopic ICC was significantly higher than ipsilateral and heterotopic ICC, but the latter two did not differ significantly from each other; (b) ICC was highest for MZ twins; (c) ICC of DZ twins was significantly lower than that of the MZ twins and higher than that of the three sibling groups (MZsb, DZsb, SB); and (d) ICC was close to zero for UNR. Finally, with respect to heritability, it was highest for homotopic areas, followed by ipsilateral, and heterotopic; however, it did not differ statistically significantly from each other.


Asunto(s)
Conectoma , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Adulto Joven
12.
Exp Brain Res ; 240(3): 969-979, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35094113

RESUMEN

Cortical inhibition is theorized to reflect an underlying property of human brain function, sharpening tuning and shaping connectivity. Although age and sex effects on large-scale resting-state brain connectivity have been well documented, effects on local cortical inhibition have received relatively limited attention. Here, we evaluated age and sex effects on presumed local inhibitory interactions in 6 lateral cortical areas using resting-state functional magnetic resonance imaging (fMRI) data acquired from 1054 young adults who participated in the Human Connectome Project. For each area, all possible pairwise crosscorrelations between prewhitened blood oxygenation level-dependent (BOLD) time series were calculated, and the highest value (CCmax) was retained to determine the mean and percentage of negative and positive CCmax. Here, we focused on the percentage of negative CCmax which we referred to as presumed "percent inhibition". The results documented regional differences in percent inhibition as well as age and sex effects, such that women's brains were characterized by significantly higher percent inhibition than men overall and in 4 of the 6 cortical areas, and the percent inhibition increased significantly with age in all 6 areas for women but in only one area for men. The findings from this young adult sample are presumed to reflect ongoing maturational processes involving local network connectivity that may be shaped by sex differences in brain structure, function, and neurochemistry.


Asunto(s)
Conectoma , Encéfalo/fisiología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Conectoma/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/fisiología , Adulto Joven
13.
Exp Brain Res ; 240(7-8): 2135-2142, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35786746

RESUMEN

Previous research has documented the utility of synchronous neural interactions (SNI) in classifying women veterans with and without posttraumatic stress disorder (PTSD) and other trauma-related outcomes based on functional connectivity using magnetoencephalography (MEG). Here, we extend that line of research to evaluate trauma-specific PTSD neural signatures with MEG in women veterans. Participants completed diagnostic interviews and underwent a task-free MEG scan from which SNI was computed. Thirty-five women veterans were diagnosed with PTSD due to sexual trauma and sixteen with PTSD due to non-sexual trauma. Strength of SNI was compared in women with and without sexual trauma, and linear discriminant analysis was used to classify the brain patterns of women with PTSD due to sexual trauma and non-sexual trauma. Comparison of SNI strength between the two groups revealed widespread hypercorrelation in women with sexual trauma relative to those without sexual trauma. Furthermore, using SNI, the brains of participants were classified as sexual trauma or non-sexual trauma with 100% accuracy. These findings bolster evidence supporting the utility of task-free SNI and suggest that neural signatures of PTSD are trauma-specific.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Encéfalo , Mapeo Encefálico , Femenino , Humanos , Magnetoencefalografía
14.
Exp Brain Res ; 240(4): 1117-1125, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35133447

RESUMEN

Women veterans represent a unique population whose experiences and neurobiology differ from that of their male counterparts. Thus, while previous research has demonstrated the utility of synchronous neural interactions (SNI) as a biomarker of posttraumatic stress disorder (PTSD) in male veterans, the utility of SNI as a biomarker of PTSD in women veterans is unclear. Here we extend that line of research to evaluate classification of women veterans with and without PTSD and other trauma-related outcomes based on functional connectivity using magnetoencephalography (MEG). A total of 121 U.S. women veterans completed diagnostic interviews and underwent a task-free MEG scan from which SNI was computed. Linear discriminant analysis was used to classify PTSD and control groups according to SNI. That discriminant function was then used to classify each individual in the partial recovery and full recovery diagnostic groups as PTSD or control. All individuals were classified correctly (100% accuracy) according to their SNI in their PTSD and control groups. Seventy-seven percent of the full recovery group and 69% of the partial recovery group were classified as control. Individual staging in PTSD recovery was captured by the Mahalanobis D2 distances from the center of the control and PTSD centroid clusters. These findings provide compelling evidence supporting the utility of task-free SNI as a biomarker of PTSD and related outcomes in women veterans.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Femenino , Humanos , Magnetoencefalografía , Masculino
15.
Exp Brain Res ; 239(3): 755-764, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388905

RESUMEN

Synchronous neural activity is a feature of normal brain function, and altered synchronization is observed in several neurological diseases. Dysfunction in hypothalamic pathways leads to obesity, suggesting that hypothalamic neural synchrony is critical for energy homeostasis. The lateral hypothalamic orexin neurons are extensively interconnected with other brain structures and are important for energy balance. Earlier studies show that rats with higher orexin sensitivity are obesity resistant. Similarly, topiramate, an anti-epileptic drug, has been shown to reduce weight in humans. Since orexin enhances neuronal excitation, we hypothesized that obesity-resistant rats with higher orexin sensitivity may exhibit enhanced hypothalamic synchronization. We further hypothesized that anti-obesity agents such as orexin and topiramate will enhance hypothalamic synchronization. To test this, we examined neural synchronicity in primary embryonic hypothalamic cell cultures, obtained from embryonic day 18 (E18) obesity-susceptible Sprague-Dawley (SD) and obesity-resistant rats. Hypothalamic tissue was cultured in multielectrode array (MEA), and recordings were performed twice weekly, from 4th to 32nd day in vitro (DIV). Next, we tested the effects of orexin and topiramate application on neural synchronicity of hypothalamic cultures obtained from SD rat embryos. Signals were analyzed for synchronization using cross correlation. Our results showed that (1) obesity-resistant hypothalamus exhibits significantly higher synchronization compared to obesity-sensitive hypothalamus; and (2) orexin and topiramate enhance hypothalamic synchronization. These results support that enhanced orexin sensitivity is associated with greater neural synchronization, and that anti-obesity treatments enhance network synchronization, thus constrain variability in hypothalamic output signals, to extrahypothalamic structures involved in energy homeostasis.


Asunto(s)
Enfermedades Metabólicas , Animales , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Neuronas/metabolismo , Neuropéptidos/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Exp Brain Res ; 239(4): 1273-1286, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33611617

RESUMEN

Here we report on the heritability and Intraclass Correlation Coefficients (ICCs) of brain volumes in 1,103 young healthy adults with mean age 29.2 years. Among them are: 153 monozygotic (MZ) twin pairs and 86 dizygotic (DZ) twin pairs, 133 non-twin siblings of MZ twins, 76 non-twin siblings of DZ twins, 335 siblings, and 81 unrelated individuals. ICCs were calculated between pairs of the following genetic groups: (1) MZ twins; (2) DZ twins; (3) MZ twins-their singleton siblings; (4) DZ twins-their singleton siblings; (5) siblings (SB); and (6) unrelated individuals (NR). We studied 4 brain groups: global, lobar, subcortical, and cortical brain regions. For each of 4 brain groups we found the same order of ICCs ranging from the highest values for MZ twins, statistically significantly smaller for the DZ twins and 3 sibling groups, and practically zero for NR. The DZ twins and 3 sibling groups were not different. No hemispheric difference was found in any genetic group. Among brain groups, the highest heritability was for the global regions, followed by lobar and subcortical groups. Only the cortical brain group heritability was statistically lower than other brain groups. We found less genetic control on the left hemisphere than on the right but no significant difference between hemispheres, and no hemispheric lateralization of heritability for any of the brain groups. These findings document substantial and systematic heritability of global and regional brain volumes.


Asunto(s)
Conectoma , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética
17.
Exp Brain Res ; 238(11): 2445-2456, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32776238

RESUMEN

The Human Connectome Project (HCP) provides a rich dataset of quantitative and domain-specific behavioral measures from twins and extensive family structures. This makes the dataset a unique and a valuable resource to investigate heritability and determine individual differences. Using a set of measures of behavioral domains (motor, emotion, personality, sensory, and cognition), we estimated the intraclass correlations (ICCs) and heritability of 56 behavioral measures for 4 genetically identified groups of participants: monozygotic (MZ) twins, dizygotic (DZ) twins, non-twin siblings (SB), and unrelated individuals (NR). The ICCs range varied among behavioral domains but systematically so among the four genetic groups. We found the same rank order of ICCs, from the highest values for MZ twins, statistically significantly smaller for the DZ twins and sibling group (compared to MZ), and close to zero for NR. The mean heritability values of the five behavioral domains were: cognition h2 = 0.405, emotion h2 = 0.316, motor h2 = 0.138, personality h2 = 0.444, and sensory h2 = 0.193. These domains share overlapping brain networks. The heritability of motor domain was significantly smaller than cognitive, personality, and emotion domains. These findings provide new insight into the effect of genetics on the various diverse behavioral measures.


Asunto(s)
Conectoma , Humanos , Individualidad , Personalidad/genética , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética
18.
J Neurosci ; 38(21): 4912-4933, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29712786

RESUMEN

We have adapted Sternberg's context-recall task to investigate the neural mechanisms of encoding serial order information in working memory, in 2 male rhesus monkeys. We recorded from primary motor, premotor, and dorsolateral prefrontal cortex while the monkeys performed the task. In each cortical area, most neurons displayed marked modulation of activity during the list presentation period of the task, whereas the serial order of the stimuli needed to be encoded in working memory. The activity of many neurons changed in a consistent manner over the course of the list presentation period, without regard to the location of the stimuli presented. Remarkably, these neurons encoded serial position information in a relative (rather than absolute) manner across different list lengths. In addition, many neurons showed activity related to both location and serial position, in the form of an interaction effect. Surprisingly, the activity of these neurons was often modulated by the location of stimuli presented before the epoch in which the activity changes occurred. In motor and premotor areas, a large proportion of neurons with list presentation activity also showed direction-related activity during the response phase, whereas in prefrontal cortex most cells showed only list presentation effects. These results show that many neurons had a heterogeneous functionality by representing distinct task variables at different periods of the task. Finally, potential confounds could not account for the effects observed. For these reasons, we conclude that these neurons were indeed participating in sequence encoding in working memory.SIGNIFICANCE STATEMENT Traditionally, primary motor, premotor, and prefrontal areas have been considered to be mainly engaged in motor output, visuomotor transformation, and higher cognitive functions, respectively. Here we show that neurons in all three cortical regions participate in the encoding of a sequence of spatial stimuli in working memory. Furthermore, a central question in cognitive neuroscience has been the manner in which the position of an item within a sequence is encoded in the brain. Our findings provide direct neurophysiological support for a specific hypothesis from cognitive psychology: that of relative coding of serial order.


Asunto(s)
Memoria a Corto Plazo/fisiología , Memoria/fisiología , Corteza Motora/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Animales , Electromiografía , Fenómenos Electrofisiológicos , Macaca mulatta , Masculino , Recuerdo Mental/fisiología , Microelectrodos , Movimiento/fisiología , Neuronas/fisiología , Aprendizaje Seriado
19.
J Neurophysiol ; 120(2): 760-764, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29694282

RESUMEN

Neural interactions in local cortical networks critically depend on the distance between interacting elements: the shorter the distance, the stronger the interactions. Here we quantified these interactions in six cortical areas of 854 individuals, including monozygotic and dizygotic twins, nontwin siblings, and nonrelated individuals. We found that the strength of zero-lag correlation between prewhitened, resting-state, blood level oxygenation-dependent functional magnetic resonance imaging time series decreased with distance as a power law. The rate of decrease, b, varied among individuals by ~1.9×, was highly correlated between hemispheres, but differed among areas (by ~1.2×) in a systematic fashion, becoming progressively less steep from frontal to occipital areas. With respect to twin status, b was significantly correlated between monozygotic twins, less so between dizygotic twins or nontwin siblings, and not at all in nonrelated individuals. These results quantify the lawful, distance-related cortical interactions and demonstrate, for the first time, the heritability of their power law. NEW & NOTEWORTHY Local cortical circuitry involves orderly neuronal interactions. A key feature of these interactions is that they are stronger the closer the interacting neurons. Here we quantified this crucial dependence of neural interactions on distance with functional magnetic resonance imaging and found that the strength of interactions decreases with distance as a power law that is very similar in all cortical lobes and heritable. These findings identify an invariant and heritable property of local cortical organization.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Modelos Neurológicos , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Gemelos Dicigóticos , Gemelos Monocigóticos , Adulto Joven
20.
Exp Brain Res ; 235(6): 1853-1859, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299413

RESUMEN

The apolipoprotein E (apoE) gene has been implicated in various conditions, most notably Alzheimer's disease and coronary artery disease. A predisposing role of the apoE4 isoform and a protective role of apoE2 isoform in those diseases have been documented. Here we investigated the role of apoE in resilience to trauma. Three hundred and forty-three US veterans were genotyped for apoE and were assessed for their lifetime trauma exposure (trauma score, T) and severity of posttraumatic stress disorder symptoms (PCL). The ratio PCL/T indicates sensitivity to trauma; hence, its inverse indicates resilience, R, to trauma. We found a significantly higher resilience in participants with apoE genotype containing the E2 allele (E2/2, E2/3) as compared to participants with the E4 allele (E4/4, E4/3). In addition, when the categorical apoE genotype was reexpressed as the number of cysteine residues per apoE mole (CysR/mole), a highly significant positive association was found between resilience and CysR/mole, such that resilience was systematically higher as the number of CysR/mole increased, from zero CysR/mole in E4/4 to four CysR/mole in E2/2. These findings demonstrate the protective role of the CysR/mole apoE in resilience to trauma: the more CysR/mole, the higher the resilience. Thus, they are in accord with other findings pointing to a generally protective role of increasing number of CysR/mole (from E4/4 to E2/2) in other diseases. However, unlike other conditions (e.g., Alzheimer's disease and coronary artery disease), resilience to trauma is not a disease but an adaptive response to trauma. Therefore, the effects of apoE seem to be more pervasive along the CysR/mole continuum, most probably reflecting underlying effects on brain synchronicity and its variability that we have documented previously (Leuthold et al., Exp Brain Res 226:525-536, 2013).


Asunto(s)
Apolipoproteínas E/genética , Trauma Psicológico/genética , Resiliencia Psicológica , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/fisiopatología , Veteranos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trauma Psicológico/complicaciones , Trastornos por Estrés Postraumático/etiología , Estados Unidos , Veteranos/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA