Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 27(16): 1769-86, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23964093

RESUMEN

The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells. We then use epigenomic profiling to identify enhancers associated with the quiescent NS cell state. Motif enrichment analysis of these enhancers predicts a major role for the nuclear factor one (NFI) family in the gene regulatory network controlling NS cell quiescence. Interestingly, we found that the family member NFIX is robustly induced when NS cells enter quiescence. Using genome-wide location analysis and overexpression and silencing experiments, we demonstrate that NFIX has a major role in the induction of quiescence in cultured NSCs. Transcript profiling of NS cells overexpressing or silenced for Nfix and the phenotypic analysis of the hippocampus of Nfix mutant mice suggest that NFIX controls the quiescent state by regulating the interactions of NSCs with their microenvironment.


Asunto(s)
Epigénesis Genética , Factores de Transcripción NFI/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Proteína Morfogenética Ósea 4/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Factores de Transcripción NFI/genética , Células-Madre Neurales/efectos de los fármacos , Unión Proteica
2.
EMBO J ; 32(24): 3119-29, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24185899

RESUMEN

To ensure proper gene regulation within constrained nuclear space, chromosomes facilitate access to transcribed regions, while compactly packaging all other information. Recent studies revealed that chromosomes are organized into megabase-scale domains that demarcate active and inactive genetic elements, suggesting that compartmentalization is important for genome function. Here, we show that very specific long-range interactions are anchored by cohesin/CTCF sites, but not cohesin-only or CTCF-only sites, to form a hierarchy of chromosomal loops. These loops demarcate topological domains and form intricate internal structures within them. Post-mitotic nuclei deficient for functional cohesin exhibit global architectural changes associated with loss of cohesin/CTCF contacts and relaxation of topological domains. Transcriptional analysis shows that this cohesin-dependent perturbation of domain organization leads to widespread gene deregulation of both cohesin-bound and non-bound genes. Our data thereby support a role for cohesin in the global organization of domain structure and suggest that domains function to stabilize the transcriptional programmes within them.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Animales , Factor de Unión a CCCTC , Dominio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proliferación Celular , Células Cultivadas , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Ratones , Mitosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Células Madre/fisiología , Transcripción Genética , Cohesinas
3.
Blood ; 120(25): 5063-72, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23086751

RESUMEN

Delta-like 4 (DLL4), a membrane-bound ligand belonging to the Notch signaling family, plays a fundamental role in vascular development and angiogenesis. We identified a conserved microRNA family, miR-30, which targets DLL4. Overexpression of miR-30b in endothelial cells led to increased vessel number and length in an in vitro model of sprouting angiogenesis. Microinjection of miR-30 mimics into zebrafish embryos resulted in suppression of dll4 and subsequent excessive sprouting of intersegmental vessels and reduction in dorsal aorta diameter. Use of a target protector against the miR-30 site within the dll4 3'UTR up-regulated dll4 and synergized with Vegfa signaling knockdown to inhibit angiogenesis. Furthermore, restoration of miR-30b or miR-30c expression during Kaposi sarcoma herpesvirus (KSHV) infection attenuated viral induction of DLL4. Together these results demonstrate that the highly conserved molecular targeting of DLL4 by the miR-30 family regulates angiogenesis.


Asunto(s)
Células Endoteliales/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Neovascularización Fisiológica , Animales , Secuencia de Bases , Línea Celular , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/virología , Regulación del Desarrollo de la Expresión Génica , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1874): 20220068, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36802781

RESUMEN

Most studies of collective animal behaviour rely on short-term observations, and comparisons of collective behaviour across different species and contexts are rare. We therefore have a limited understanding of intra- and interspecific variation in collective behaviour over time, which is crucial if we are to understand the ecological and evolutionary processes that shape collective behaviour. Here, we study the collective motion of four species: shoals of stickleback fish (Gasterosteus aculeatus), flocks of homing pigeons (Columba livia), a herd of goats (Capra aegagrus hircus) and a troop of chacma baboons (Papio ursinus). First, we describe how local patterns (inter-neighbour distances and positions), and group patterns (group shape, speed and polarization) during collective motion differ across each system. Based on these, we place data from each species within a 'swarm space', affording comparisons and generating predictions about the collective motion across species and contexts. We encourage researchers to add their own data to update the 'swarm space' for future comparative work. Second, we investigate intraspecific variation in collective motion over time and provide guidance for researchers on when observations made over different time scales can result in confident inferences regarding species collective motion. This article is part of a discussion meeting issue 'Collective behaviour through time'.


Asunto(s)
Columbidae , Smegmamorpha , Animales , Conducta Animal , Movimiento (Física) , Evolución Biológica
5.
Behav Ecol ; 33(1): 47-54, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197806

RESUMEN

Studies of self-organizing groups like schools of fish or flocks of birds have sought to uncover the behavioral rules individuals use (local-level interactions) to coordinate their motion (global-level patterns). However, empirical studies tend to focus on short-term or one-off observations where coordination has already been established or describe transitions between different coordinated states. As a result, we have a poor understanding of how behavioral rules develop and are maintained in groups. Here, we study the emergence and repeatability of coordinated motion in shoals of stickleback fish (Gasterosteus aculeatus). Shoals were introduced to a simple environment, where their spatio-temporal position was deduced via video analysis. Using directional correlation between fish velocities and wavelet analysis of fish positions, we demonstrate how shoals that are initially uncoordinated in their motion quickly transition to a coordinated state with defined individual leader-follower roles. The identities of leaders and followers were repeatable across two trials, and coordination was reached more quickly during the second trial and by groups of fish with higher activity levels (tested before trials). The rapid emergence of coordinated motion and repeatability of social roles in stickleback fish shoals may act to reduce uncertainty of social interactions in the wild, where individuals live in a system with high fission-fusion dynamics and non-random patterns of association.

6.
Microorganisms ; 10(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35336202

RESUMEN

Epitheliocystis is a fish gill disease caused by a broad range of intracellular bacteria infecting freshwater and marine fish worldwide. Here we report the occurrence and progression of epitheliocystis in greater amberjack reared in Crete (Greece). The disease appears to be caused mainly by a novel Betaproteobacteria belonging to the Candidatus Ichthyocystis genus with a second agent genetically similar to Ca. Parilichlamydia carangidicola coinfecting the gills in some cases. After a first detection of the disease in 2017, we investigated epitheliocystis in the following year's cohort of greater amberjack juveniles (cohort 2018) transferred from inland tanks to the same cage farm in the open sea where the first outbreak was detected. This cohort was monitored for over a year together with stocks of gilthead seabream and meagre co-farmed in the same area. Our observations showed that epitheliocystis could be detected in greater amberjack gills as early as a month following the transfer to sea cages, with ionocytes at the base of the gill lamellae being initially infected. Cyst formation appears to trigger a proliferative response, leading to the fusion of lamellae, impairment of gill functions and subsequently to mortality. Lesions are characterized by infiltration of immune cells, indicating activation of the innate immune response. At later stages of the outbreak, cysts were no longer found in ionocytes but were observed in mucocytes at the trailing edge of the filament. Whole cysts appeared finally to be expelled from infected mucocytes directly into the water, which might constitute a novel means of dispersion of the infectious agents. Molecular screening indicates that meagre is not affected by this disease and confirms the presence of previously described epitheliocystis agents, Ca. Ichthyocystis sparus, Ca. Ichthyocystis hellenicum and Ca. Similichlamydia spp., in gilthead seabream. Prevalence data show that the bacteria persist in both gilthead seabream and greater amberjack cohorts after first infection.

7.
Curr Res Struct Biol ; 3: 324-336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901882

RESUMEN

The gasotransmitter nitric oxide (NO) is a critical endogenous regulator of homeostasis, in major part via the generation of cGMP (cyclic guanosine monophosphate) from GTP (guanosine triphosphate) by NO's main physiological receptor, the soluble guanylate cyclase (sGC). sGC is a heterodimer, composed of an α1 and a ß1 subunit, of which the latter contains the heme-nitric oxide/oxygen (H-NOX) domain, responsible for NO recognition, binding and signal initiation. The NO/sGC/cGMP axis is dysfunctional in a variety of diseases, including hypertension and heart failure, especially since oxidative stress results in heme oxidation, sGC unresponsiveness to NO and subsequent degradation. As a central player in this axis, sGC is the focus of intense research efforts aiming to develop therapeutic molecules that enhance its activity. A class of drugs named sGC "activators" aim to replace the oxidized heme of the H-NOX domain, thus stabilizing the enzyme and restoring its activity. Although numerous studies outline the pharmacology and binding behavior of these compounds, the static 3D models available so far do not allow a satisfactory understanding of the structural basis of sGC's activation mechanism by these drugs. Herein, application NMR describes different conformational states during the replacement of the heme by a sGC activators. We show that the two sGC activators (BAY 58-2667 and BAY 60-2770) significantly decrease the conformational plasticity of the recombinant H-NOX protein domain of Nostoc sp. cyanobacterium, rendering it a lot more rigid compared to the heme-occupied H-NOX. NMR methodology also reveals, for the first time, a surprising bi-directional competition between reduced heme and these compounds, pointing to a highly dynamic regulation of the H-NOX domain. This competitive, bi-directional mode of interaction is also confirmed by monitoring cGMP generation in A7r5 vascular smooth muscle cells by these activators. We show that, surprisingly, heme's redox state impacts differently the bioactivity of these two structurally similar compounds. In all, by NMR-based and functional approaches we contribute unique experimental insight into the dynamic interaction of sGC activators with the H-NOX domain and its dependence on the heme redox status, with the ultimate goal to permit a better design of such therapeutically important molecules.

8.
Biomol NMR Assign ; 15(1): 53-57, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33128204

RESUMEN

Soluble guanylate cyclase (sGC) enzyme is activated by the gaseous signaling agent nitric oxide (NO) and triggers the conversion of GTP (guanosine 5'-triphosphate) to cGMP (cyclic guanylyl monophosphate). It contains the heme binding H-NOX (heme-nitric oxide/oxygen binding) domain which serves as the sensor of NO and it is highly conserved across eukaryotes and bacteria as well. Many research studies focus on the synthesis of chemical compounds bearing possible therapeutic action, which mimic the heme moiety and activate the sGC enzyme. In this study, we report a preliminary solution NMR (Nuclear Magnetic Resonance) study of the H-NOX domain from Nostoc sp. cyanobacterium in complex with the chemical sGC activator cinaciguat (BAY58-2667). An almost complete sequence-specific assignment of its 1H, 15N and 13C resonances was obtained and its secondary structure predicted by TALOS+.


Asunto(s)
Nostoc , Resonancia Magnética Nuclear Biomolecular , Benzoatos , Guanilil Ciclasa Soluble
9.
Nat Commun ; 12(1): 1998, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790302

RESUMEN

The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance.


Asunto(s)
Benzamidas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Xenoinjertos/efectos de los fármacos , Morfolinas/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Xenoinjertos/metabolismo , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Inhibidores de Proteínas Quinasas/farmacología , Resultado del Tratamiento
10.
Cancer Cell ; 38(4): 516-533.e9, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32976773

RESUMEN

PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Proteína Forkhead Box M1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Proteína Forkhead Box M1/genética , Fulvestrant/administración & dosificación , Humanos , Imidazoles/administración & dosificación , Células MCF-7 , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Oxazepinas/administración & dosificación , Receptores de Estrógenos/metabolismo , Tamoxifeno/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
Nat Commun ; 10(1): 2908, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266948

RESUMEN

Cohesin and CTCF are master regulators of genome topology. How these ubiquitous proteins contribute to cell-type specific genome structure is poorly understood. Here, we explore quantitative aspects of topologically associated domains (TAD) between pluripotent embryonic stem cells (ESC) and lineage-committed cells. ESCs exhibit permissive topological configurations which manifest themselves as increased inter- TAD interactions, weaker intra-TAD interactions, and a unique intra-TAD connectivity whereby one border makes pervasive interactions throughout the domain. Such 'stripe' domains are associated with both poised and active chromatin landscapes and transcription is not a key determinant of their structure. By tracking the developmental dynamics of stripe domains, we show that stripe formation is linked to the functional state of the cell through cohesin loading at lineage-specific enhancers and developmental control of CTCF binding site occupancy. We propose that the unique topological configuration of stripe domains represents a permissive landscape facilitating both productive and opportunistic gene regulation and is important for cellular identity.


Asunto(s)
Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Elementos de Facilitación Genéticos , Células Madre Pluripotentes/metabolismo , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Pluripotentes/química , Unión Proteica , Dominios Proteicos , Especificidad de la Especie , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA