RESUMEN
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium-spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72-induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A:EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism, and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image analysis, we found that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.
Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Animales , Neuronas/metabolismo , Neuronas Espinosas Medianas , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Gotas Lipídicas/metabolismo , Proteómica , Cuerpo Estriado/metabolismo , Modelos Animales de EnfermedadRESUMEN
X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.
Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Neurodegenerativas , Trastornos Parkinsonianos , Humanos , Distonía/genética , Distonía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteómica , Factor de Transcripción TFIID/genética , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismoRESUMEN
Recently in Cell Metabolism, Logan et al. (2016) exploit membrane potential-dependent mitochondrial accumulation of charged precursors, causing them to combine by "click" chemistry 1,000,000 times faster than without accumulation to generate an ultrasensitive indicator for membrane potentials and foreshadow targeted drug synthesis in vivo.
Asunto(s)
Potenciales de la Membrana , Mitocondrias/metabolismo , Potencial de la Membrana MitocondrialRESUMEN
Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.
Asunto(s)
Peróxido de Hidrógeno , Superóxidos , Ratas , Animales , Superóxidos/metabolismo , Peróxido de Hidrógeno/metabolismo , NAD/metabolismo , Mitocondrias/metabolismo , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/farmacologíaRESUMEN
Mitochondrial membrane potential (ΔΨm) is a global indicator of mitochondrial function. Previous reports on heterogeneity of ΔΨm were qualitative or semiquantitative. Here, we quantified intercellular differences in ΔΨm in unsynchronized human cancer cells, cells synchronized in G1, S, and G2, and human fibroblasts. We assessed ΔΨm using a two-pronged microscopy approach to measure relative fluorescence of tetramethylrhodamine methyl ester (TMRM) and absolute values of ΔΨm. We showed that ΔΨm is more heterogeneous in cancer cells compared to fibroblasts, and it is maintained throughout the cell cycle. The effect of chemical inhibition of the respiratory chain and ATP synthesis differed between basal, low and high ΔΨm cells. Overall, our results showed that intercellular heterogeneity of ΔΨm is mainly modulated by intramitochondrial factors, it is independent of the ΔΨm indicator and it is not correlated with intercellular heterogeneity of plasma membrane potential or the phases of the cell cycle.
Asunto(s)
Ciclo Celular , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias/metabolismo , Células Hep G2 , Humanos , Mitocondrias/patología , Neoplasias/patologíaRESUMEN
Oxidation of succinate by mitochondria can generate a higher protonmotive force (pmf) than can oxidation of NADH-linked substrates. Fundamentally, this is because of differences in redox potentials and gearing. Biology adds kinetic constraints that tune the oxidation of NADH and succinate to ensure that the resulting mitochondrial pmf is suitable for meeting cellular needs without triggering pathology. Tuning within an optimal range is used, for example, to shift ATP consumption between different consumers. Conditions that overcome these constraints and allow succinate oxidation to drive pmf too high can cause pathological generation of reactive oxygen species. We discuss the thermodynamic properties that allow succinate oxidation to drive pmf higher than NADH oxidation, and discuss the evidence for kinetic tuning of ATP production and for pathologies resulting from substantial succinate oxidation in vivo.
Asunto(s)
Mitocondrias/metabolismo , Ácido Succínico/metabolismo , Animales , Metabolismo Energético , TermodinámicaRESUMEN
Somatic stem cells maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here we identify Ca(2+) signalling as a central regulator of intestinal stem cell (ISC) activity in Drosophila. We show that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response, and for an associated modulation of cytosolic Ca(2+) oscillations that results in sustained high cytosolic Ca(2+) concentrations. High cytosolic Ca(2+) concentrations induce ISC proliferation by regulating Calcineurin and CREB-regulated transcriptional co-activator (Crtc). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca(2+) oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca(2+) levels allows effective integration of diverse mitogenic signals in ISCs to adapt their proliferative activity to the needs of the tissue.
Asunto(s)
Calcio/metabolismo , Drosophila melanogaster/citología , Transducción de Señal , Células Madre/citología , Animales , Proliferación Celular/efectos de los fármacos , Citosol/química , Dieta , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Ácido Glutámico/farmacología , Intestinos/citología , Receptores de Glutamato Metabotrópico/metabolismo , Células Madre/metabolismoRESUMEN
Vinpocetine is considered as neuroprotectant drug and used for treatment of brain ischemia and cognitive deficiencies for decades. A number of enzymes, channels and receptors can bind vinpocetine, however the mechanisms of many effects' are still not clear. The present study investigated the effects of vinpocetine from the mitochondrial bioenergetic aspects. In primary brain capillary endothelial cells the purinergic receptor-stimulated mitochondrial Ca2+ uptake and efflux were studied. Vinpocetine exerted a partial inhibition on the mitochondrial calcium efflux. In rodent brain synaptosomes vinpocetine (30 µM) inhibited respiration in uncoupler stimulated synaptosomes and decreased H2O2 release from the nerve terminals in resting and in complex I inhibited conditions, respectively. In isolated rat brain mitochondria using either complex I or complex II substrates leak respiration was stimulated, but ADP-induced respiration was inhibited by vinpocetine. The stimulation of oxidation was associated with a small extent of membrane depolarization. Mitochondrial H2O2 production was inhibited by vinpocetine under all conditions investigated. The most pronounced effects were detected with the complex II substrate succinate. Vinpocetine also mitigated both Ca2+-induced mitochondrial Ca2+-release and Ca2+-induced mitochondrial swelling. It lowered the rate of mitochondrial ATP synthesis, while increasing ATPase activity. These results indicate more than a single mitochondrial target of this vinca alkaloid. The relevance of the affected mitochondrial mechanisms in the anti ischemic effect of vinpocetine is discussed.
Asunto(s)
Encéfalo/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Alcaloides de la Vinca/farmacología , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas Wistar , Sinaptosomas/metabolismoRESUMEN
Mitochondrial metabolism plays a central role in insulin secretion in pancreatic beta-cells. Generation of protonmotive force and ATP synthesis from glucose-originated pyruvate are critical steps in the canonical pathway of glucose-stimulated insulin secretion. Mitochondrial metabolism is intertwined with pathways that are thought to amplify insulin secretion with mechanisms distinct from the canonical pathway, and the relative importance of these two pathways is controversial. Here I show that glucose-induced mitochondrial membrane potential (MMP) hyperpolarization is necessary for, and predicts, the rate of insulin secretion in primary cultured human beta-cells. When glucose concentration is elevated, increased metabolism results in a substantial MMP hyperpolarization, as well as in increased rates of ATP synthesis and turnover marked by faster cell respiration. Using modular kinetic analysis I explored what properties of cellular energy metabolism enable a large glucose-induced change in MMP in human beta-cells. I found that an ATP-dependent pathway activates glucose or substrate oxidation, acting as a positive feedback in energy metabolism. This activation mechanism is essential for concomitant fast respiration and high MMP, and for a high magnitude glucose-induced MMP hyperpolarization and therefore for insulin secretion.
Asunto(s)
Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Activación Metabólica , Células Cultivadas , Metabolismo Energético , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Oxidación-ReducciónRESUMEN
Partitioning of ATP generation between glycolysis and oxidative phosphorylation is central to cellular bioenergetics but cumbersome to measure. We describe here how rates of ATP generation by each pathway can be calculated from simultaneous measurements of extracellular acidification and oxygen consumption. We update theoretical maximum ATP yields by mitochondria and cells catabolizing different substrates. Mitochondrial P/O ratios (mol of ATP generated per mol of [O] consumed) are 2.73 for oxidation of pyruvate plus malate and 1.64 for oxidation of succinate. Complete oxidation of glucose by cells yields up to 33.45 ATP/glucose with a maximum P/O of 2.79. We introduce novel indices to quantify bioenergetic phenotypes. The glycolytic index reports the proportion of ATP production from glycolysis and identifies cells as primarily glycolytic (glycolytic index > 50%) or primarily oxidative. The Warburg effect is a chronic increase in glycolytic index, quantified by the Warburg index. Additional indices quantify the acute flexibility of ATP supply. The Crabtree index and Pasteur index quantify the responses of oxidative and glycolytic ATP production to alterations in glycolysis and oxidative reactions, respectively; the supply flexibility index quantifies overall flexibility of ATP supply; and the bioenergetic capacity quantifies the maximum rate of total ATP production. We illustrate the determination of these indices using C2C12 myoblasts. Measurement of ATP use revealed no significant preference for glycolytic or oxidative ATP by specific ATP consumers. Overall, we demonstrate how extracellular fluxes quantitatively reflect intracellular ATP turnover and cellular bioenergetics. We provide a simple spreadsheet to calculate glycolytic and oxidative ATP production rates from raw extracellular acidification and respiration data.
Asunto(s)
Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Oxígeno/química , Animales , Línea Celular , Citoplasma/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Glucógeno/química , Glucólisis , Homeostasis , Ratones , Mitocondrias/metabolismo , Fosforilación Oxidativa , FenotipoRESUMEN
Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic ß-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contributes to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of ß-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of ß-cells to glucose. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/patología , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Humanos , Células Secretoras de Insulina/patologíaRESUMEN
Synaptic mitochondria are thought to be critical in supporting neuronal energy requirements at the synapse, and bioenergetic failure at the synapse may impair neural transmission and contribute to neurodegeneration. However, little is known about the energy requirements of synaptic vesicle release or whether these energy requirements go unmet in disease, primarily due to a lack of appropriate tools and sensitive assays. To determine the dependence of synaptic vesicle cycling on mitochondrially derived ATP levels, we developed two complementary assays sensitive to mitochondrially derived ATP in individual, living hippocampal boutons. The first is a functional assay for mitochondrially derived ATP that uses the extent of synaptic vesicle cycling as a surrogate for ATP level. The second uses ATP FRET sensors to directly measure ATP at the synapse. Using these assays, we show that endocytosis has high ATP requirements and that vesicle reacidification and exocytosis require comparatively little energy. We then show that to meet these energy needs, mitochondrially derived ATP is rapidly dispersed in axons, thereby maintaining near normal levels of ATP even in boutons lacking mitochondria. As a result, the capacity for synaptic vesicle cycling is similar in boutons without mitochondria as in those with mitochondria. Finally, we show that loss of a key respiratory subunit implicated in Leigh disease markedly decreases mitochondrially derived ATP levels in axons, thus inhibiting synaptic vesicle cycling. This proves that mitochondria-based energy failure can occur and be detected in individual neurons that have a genetic mitochondrial defect.
Asunto(s)
Adenosina Trifosfato/metabolismo , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Adenosina Trifosfato/genética , Animales , Células Cultivadas , Endocitosis/fisiología , Exocitosis/fisiología , Hipocampo/citología , Mitocondrias/genética , Neuronas/citología , Ratas , Vesículas Sinápticas/genéticaRESUMEN
BACKGROUND: The rate at which cells acidify the extracellular medium is frequently used to report glycolytic rate, with the implicit assumption that conversion of uncharged glucose or glycogen to lactate(-)+H(+) is the only significant source of acidification. However, another potential source of extracellular protons is the production of CO2 during substrate oxidation: CO2 is hydrated to H2CO3, which then dissociates to HCO3(-)+H(+). METHODS: O2 consumption and pH were monitored in a popular platform for measuring extracellular acidification (the Seahorse XF Analyzer). RESULTS: We found that CO2 produced during respiration caused almost stoichiometric release of H(+) into the medium. With C2C12 myoblasts given glucose, respiration-derived CO2 contributed 34% of the total extracellular acidification. When glucose was omitted or replaced by palmitate or pyruvate, this value was 67-100%. Analysis of primary cells, cancer cell lines, stem cell lines, and isolated synaptosomes revealed contributions of CO2-produced acidification that were usually substantial, ranging from 3% to 100% of the total acidification rate. CONCLUSION: Measurement of glycolytic rate using extracellular acidification requires differentiation between respiratory and glycolytic acid production. GENERAL SIGNIFICANCE: The data presented here demonstrate the importance of this correction when extracellular acidification is used for quantitative measurement of glycolytic flux to lactate. We describe a simple way to correct the measured extracellular acidification rate for respiratory acid production, using simultaneous measurement of oxygen consumption rate. SUMMARY STATEMENT: Extracellular acidification is often assumed to result solely from glycolytic lactate production, but respiratory CO2 also contributes. We demonstrate that extracellular acidification by myoblasts given glucose is 66% glycolytic and 34% respiratory and describe a method to differentiate these sources.
Asunto(s)
Glucólisis , Consumo de Oxígeno , Animales , Dióxido de Carbono/metabolismo , Células Cultivadas , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Ratones , RatasRESUMEN
In the presence of high glucose or pyruvate, INS-1 832/13 insulinoma cells undergo stochastic oscillations in plasma membrane potential (Δψp) leading to associated fluctuations in cytosolic free Ca(2+) concentration ([Ca(2+)]c). Oscillations are not driven by upstream metabolic fluctuations, but rather by autonomous ionic mechanisms, the details of which are unclear. We have investigated the nature of the oscillator, with simultaneous fluorescence monitoring of Δψp, [Ca(2+)]c and exocytosis at single-cell resolution, combined with analysis of the occurrence, frequency and amplitude of Δψp oscillations. Oscillations were closely coupled to exocytosis, indicated by coincident synaptopHluorin fluorescence enhancement. L-type Ca(2+) channel inhibitors enhanced Δψp and [Ca(2+)]c oscillation frequency in the presence of pyruvate, but abolished the sustained [Ca(2+)]c response following KCl depolarization. The L-type Ca(2+) channel inhibitor isradipine did not inhibit oscillation-linked exocytosis. The T-type Ca(2+) channel inhibitor NNC 55-0396 inhibited Δψp and [Ca(2+)]c oscillations, implying that T-type Ca(2+) channels trigger oscillations and consequent exocytosis. Since distinct ion channels operate in oscillating and non-oscillating cells, quantitative analysis of Δψp and [Ca(2+)]c oscillations in a ß-cell population may help to improve our understanding of the link between metabolism and insulin secretion.
Asunto(s)
Relojes Biológicos/fisiología , Señalización del Calcio/fisiología , Exocitosis/fisiología , Insulina/metabolismo , Potenciales de la Membrana/fisiología , Relojes Biológicos/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Exocitosis/efectos de los fármacos , Humanos , Secreción de Insulina , Potenciales de la Membrana/efectos de los fármacosRESUMEN
Mitochondria play multiple roles in the maintenance of neuronal function under physiological and pathological conditions. In addition to ATP generation, they can act as major short-term calcium sinks and can both generate, and be damaged by, reactive oxygen species. Two complementary preparations have been extensively employed to investigate in situ neuronal mitochondrial bioenergetics, primary neuronal cultures and acutely isolated nerve terminals, synaptosomes. A major focus of the cell culture preparation has been the investigation of glutamate excitotoxicity. Oxidative phosphorylation, calcium transport and reactive oxygen species play complex interlocking roles in the life and death of the glutamate exposed neuron. Synaptosomes may be isolated from specific brain regions at any developmental stage and therefore provide a valuable ex vivo approach in studying mouse models. Recent advances have allowed synaptosomal bioenergetics to be studied on a microgram scale, and, in combination with approaches to correct for functional and transmitter heterogeneity, have allowed hypotheses concerning presynaptic mitochondrial dysfunction to be tested on a variety of genetic models of neurodegenerative disorders.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Metabolismo Energético , Mitocondrias/metabolismo , Neuronas/metabolismo , Sinaptosomas/metabolismo , Animales , Supervivencia Celular , Ratones , Neuronas/citologíaRESUMEN
Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated ß-galactosidase activity (SA-ß-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by i) quantifying colorimetric SA-ß-Gal via optical density; ii) implementing staining background controls; iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-ß-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.
RESUMEN
Cellular senescence is a major driver of aging and age-related diseases. Quantification of senescent cells remains challenging due to the lack of senescence-specific markers and generalist, unbiased methodology. Here, we describe the Fully-Automated Senescence Test (FAST), an image-based method for the high-throughput, single-cell assessment of senescence in cultured cells. FAST quantifies three of the most widely adopted senescence-associated markers for each cell imaged: senescence-associated ß-galactosidase activity (SA-ß-Gal) using X-Gal, proliferation arrest via lack of 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and enlarged morphology via increased nuclear area. The presented workflow entails microplate image acquisition, image processing, data analysis, and graphing. Standardization was achieved by (i) quantifying colorimetric SA-ß-Gal via optical density; (ii) implementing staining background controls; and (iii) automating image acquisition, image processing, and data analysis. In addition to the automated threshold-based scoring, a multivariate machine learning approach is provided. We show that FAST accurately quantifies senescence burden and is agnostic to cell type and microscope setup. Moreover, it effectively mitigates false-positive senescence marker staining, a common issue arising from culturing conditions. Using FAST, we compared X-Gal with fluorescent C12FDG live-cell SA-ß-Gal staining on the single-cell level. We observed only a modest correlation between the two, indicating that those stains are not trivially interchangeable. Finally, we provide proof of concept that our method is suitable for screening compounds that modify senescence burden. This method will be broadly useful to the aging field by enabling rapid, unbiased, and user-friendly quantification of senescence burden in culture, as well as facilitating large-scale experiments that were previously impractical.
Asunto(s)
Biomarcadores , Senescencia Celular , Ensayos Analíticos de Alto Rendimiento , beta-Galactosidasa , Senescencia Celular/fisiología , Humanos , Biomarcadores/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , beta-Galactosidasa/metabolismo , Células Cultivadas , Procesamiento de Imagen Asistido por Computador , Fibroblastos , Análisis de la Célula Individual/métodosRESUMEN
Cellular senescence has been strongly linked to aging and age-related diseases. It is well established that the phenotype of senescent cells is highly heterogeneous and influenced by their cell type and senescence-inducing stimulus. Recent single-cell RNA-sequencing studies identified heterogeneity within senescent cell populations. However, proof of functional differences between such subpopulations is lacking. To identify functionally distinct senescent cell subpopulations, we employed high-content image analysis to measure senescence marker expression in primary human endothelial cells and fibroblasts. We found that G2-arrested senescent cells feature higher senescence marker expression than G1-arrested senescent cells. To investigate functional differences, we compared IL-6 secretion and response to ABT263 senolytic treatment in G1 and G2 senescent cells. We determined that G2-arrested senescent cells secrete more IL-6 and are more sensitive to ABT263 than G1-arrested cells. We hypothesize that cell cycle dependent DNA content is a key contributor to the heterogeneity within senescent cell populations. This study demonstrates the existence of functionally distinct senescent subpopulations even in culture. This data provides the first evidence of selective cell response to senolytic treatment among senescent cell subpopulations. Overall, this study emphasizes the importance of considering the senescent cell heterogeneity in the development of future senolytic therapies.
RESUMEN
Microgravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station. Overall, microgravity alters specific pathways for optimal immunity, including the cytoskeleton, interferon signaling, pyroptosis, temperature-shock, innate inflammation (e.g., Coronavirus pathogenesis pathway and IL-6 signaling), nuclear receptors, and sirtuin signaling. Microgravity directs monocyte inflammatory parameters, and impairs T cell and NK cell functionality. Using machine learning, we identify numerous compounds linking microgravity to immune cell transcription, and demonstrate that the flavonol, quercetin, can reverse most abnormal pathways. These results define immune cell alterations in microgravity, and provide opportunities for countermeasures to maintain normal immunity in space.