RESUMEN
BACKGROUND AND AIMS: The goal of this study was to define basic constituents of the adult peripheral nervous system (PNS) using intact human nerve tissues. METHODS: We combined fluorescent and chromogenic immunostaining methods, myelin-selective fluorophores, and routine histological stains to identify common cellular and noncellular elements in aldehyde-fixed nerve tissue sections. We employed Schwann cell (SC)-specific markers, such as S100ß, NGFR, Sox10, and myelin protein zero (MPZ), together with axonal, extracellular matrix (collagen IV, laminin, fibronectin), and fibroblast markers to assess the SC's relationship to myelin sheaths, axons, other cell types, and the acellular environment. RESULTS: Whereas S100ß and Sox10 revealed mature SCs in the absence of other stains, discrimination between myelinating and non-myelinating (Remak) SCs required immunodetection of NGFR along with axonal and/or myelin markers. Surprisingly, our analysis of NGFR+ profiles uncovered the existence of at least 3 different novel populations of NGFR+/S100ß- cells, herein referred to as nonglial cells, residing in the stroma and perivascular areas of all nerve compartments. An important proportion of the nerve's cellular content, including circa 30% of endoneurial cells, consisted of heterogenous S100ß negative cells that were not associated with axons. Useful markers to identify the localization and diversity of nonglial cell types across different compartments were Thy1, CD34, SMA, and Glut1, a perineurial cell marker. INTERPRETATION: Our optimized methods revealed additional detailed information to update our understanding of the complexity and spatial orientation of PNS-resident cell types in humans.
Asunto(s)
Nervios Periféricos , Subunidad beta de la Proteína de Unión al Calcio S100 , Humanos , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/análisis , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Células de Schwann/metabolismo , Receptores de Factor de Crecimiento Nervioso/análisis , Receptores de Factor de Crecimiento Nervioso/metabolismo , Masculino , Femenino , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/análisis , Adulto , Persona de Mediana Edad , Axones/metabolismo , Anciano , Vaina de Mielina/metabolismo , Proteínas del Tejido NerviosoRESUMEN
Using standardized guidelines in preclinical research has received increased interest in light of recent concerns about transparency in data reporting and apparent variation in data quality, as evidenced by irreproducibility of results. Although the costs associated with supporting quality through a quality management system are often obvious line items in laboratory budgets, the treatment of the costs associated with quality failure is often overlooked and difficult to quantify. Thus, general estimations of quality costs can be misleading and inaccurate, effectively undervaluing costs recovered by reducing quality defects. Here, we provide examples of quality costs in preclinical research and describe how we have addressed misconceptions of quality management implementation as only marginally beneficial and/or unduly burdensome. We provide two examples of implementing a quality management system (QMS) in preclinical experimental (animal) research environments - one in Europe, the German Mouse Clinic, having established ISO 9001 and the other in the United States, the University of Kentucky (UK), having established Good Laboratory Practice-compliant infrastructure. We present a summary of benefits to having an effective QMS, as may be useful in guiding discussions with funders or administrators to promote interest and investment in a QMS, which ultimately supports shared, mutually beneficial outcomes.
Asunto(s)
Control de Calidad , Animales , Guías como Asunto , Ratones , Estados UnidosRESUMEN
Glutamate dysfunction has been implicated in a number of substance of abuse studies, including cocaine and methamphetamine. Moreover, in attention-deficit/hyperactivity disorder (ADHD), it has been discovered that when the initiation of stimulant treatment occurs during adolescence, there is an increased risk of developing a substance use disorder later in life. The spontaneously hypertensive rat (SHR) serves as a phenotype for ADHD and studies have found increased cocaine self-administration in adult SHRs when treated with the stimulant methylphenidate (MPH) during adolescence. For this reason, we wanted to examine glutamate signaling in the pre-limbic frontal cortex, a region implicated in ADHD and drug addiction, in the SHR and its progenitor control strain, the Wistar Kyoto (WKY). We chronically implanted glutamate-selective microelectrode arrays (MEAs) into 8-week-old animals and treated with MPH (2 mg/kg, s.c.) for 11 days while measuring tonic and phasic extracellular glutamate concentrations. We observed that intermediate treatment with a clinically relevant dose of MPH increased tonic glutamate levels in the SHR but not the WKY compared to vehicle controls. After chronic treatment, both the SHR and WKY exhibited increased tonic glutamate levels; however, only the SHR was found to have decreased amplitudes of phasic glutamate signaling following chronic MPH administration. The findings from this study suggest that the MPH effects on extracellular glutamate levels in the SHR may potentiate the response for drug abuse later in life. Additionally, these data illuminate a pathway for investigating novel therapies for the treatment of ADHD and suggest that possibly targeting the group II metabotropic glutamate receptors may be a useful therapeutic avenue for adolescents diagnosed with ADHD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Estimulantes del Sistema Nervioso Central/administración & dosificación , Modelos Animales de Enfermedad , Lóbulo Frontal/metabolismo , Ácido Glutámico/metabolismo , Metilfenidato/administración & dosificación , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Estimulantes del Sistema Nervioso Central/toxicidad , Esquema de Medicación , Electrodos Implantados , Lóbulo Frontal/efectos de los fármacos , Masculino , Metilfenidato/toxicidad , Movimiento/efectos de los fármacos , Movimiento/fisiología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Especificidad de la EspecieRESUMEN
Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.
Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Astrocitos , Calcineurina/genética , Factores de Transcripción NFATC/genética , Red Nerviosa/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores , Silenciador del Gen , Hipocampo/metabolismo , Aprendizaje por Laberinto , Ratones , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacosRESUMEN
The attribution of incentive salience to reward-predictive stimuli has been shown to be associated with substance abuse-like behavior such as increased drug taking. Evidence suggests that glutamate neurotransmission and sequential N-methyl-D-aspartate (NMDA) activation are involved in the attribution of incentive salience. Here, we further explore the role of second-by-second glutamate neurotransmission in the attribution of incentive salience to reward-predictive stimuli by measuring sign-tracking behavior during a Pavlovian conditioned approach procedure using ceramic-based microelectrode arrays configured for sensitive measures of extracellular glutamate in awake behaving Sprague-Dawley rats. Specifically, we show that there is an increase in extracellular glutamate levels in the prelimbic cortex (PrL) and the nucleus accumbens core (NAcC) during sign-tracking behavior to a food-predictive conditioned stimulus (CS+) compared to the presentation of a non-predictive conditioned stimulus (CS-). Furthermore, the results indicate greater increases in extracellular glutamate levels in the PrL compared to NAcC in response to the CS+, including differences in glutamate release and signal decay. Taken together, the present research suggests that there is differential glutamate signaling in the NAcC and PrL during sign-tracking behavior to a food-predictive CS+.
Asunto(s)
Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Motivación/fisiología , Transducción de Señal/fisiología , Animales , Condicionamiento Operante , Masculino , Ratas , Ratas Sprague-Dawley , Recompensa , Transmisión Sináptica , VigiliaRESUMEN
Seizures are paroxysmal events in which increased neuronal activity is accompanied by an increase in localized energetic demand. The ability to simultaneously record electrical and chemical events using a single sensor poses a promising approach to identify seizure onset zones in the brain. In the present work, we used ceramic-based platinum microelectrode arrays (MEAs) to perform high-frequency amperometric recording of local pO2 and local field potential (LFP)-related currents during seizures in the hippocampus of chronically implanted freely moving rats. Resting levels of O2 in the rodent brain varied between 6.6 ± 0.7 µM in the dentate gyrus (DG) region of the hippocampus and 22.1 ± 4.9 µM in the cerebral cortex. We also observed an expected increase in hippocampal pO2 (15 ± 4% from baseline) in response to tail pinch stress paradigm. Finally, induction of status epilepticus by intrahippocampal injection of pilocarpine induced biphasic changes in pO2 in the hippocampus. The initial dip at seizure onset (ΔO2 = -4.5 ± 0.7 µM) was followed by a prolonged hyperoxygenation phase (ΔO2 = +10.4 ± 2.9 µM). By acquiring the amperometry signal with a high sampling rate of 100 Hz we decomposed the raw signal in an oximetry recording (<1 Hz) and LFP recording (>1 Hz), demonstrating that each individual Pt site can simultaneously report changes in local pO2 and LFP-related currents during pilocarpine-induced seizure activity. This has high potential for translation into the clinical setting supported on intracranial grid or strip electrodes.
Asunto(s)
Técnicas Electroquímicas , Epilepsia/diagnóstico , Oximetría , Oxígeno/sangre , Animales , Fenómenos Electrofisiológicos , Epilepsia/sangre , Masculino , Microelectrodos , Ratas , Ratas WistarRESUMEN
Ceramic-based multisite Pt microelectrode arrays (MEAs) were characterized for their basic electrochemical characteristics and used for in vivo measurements of oxygen with high resolution in the brain extracellular space. The microelectrode array sites showed a very smooth surface mainly composed of thin-film polycrystalline Pt, with some apparent nanoscale roughness that was not translated into an increased electrochemical active surface area. The electrochemical cyclic voltammetric behavior was characteristic of bulk Pt in both acidic and neutral media. In addition, complex plane impedance spectra showed the required low impedance (0.22 MΩ; 10.8 Ω cm2) at 1 kHz and very smooth electrode surfaces. The oxygen reduction reaction on the Pt surface proceeds as a single 4-electron reduction pathway at -0.6 V vs Ag/AgCl reference electrode. Cyclic voltammetry and amperometry demonstrate excellent electrocatalytic activity toward oxygen reduction in addition to a high sensitivity (-0.16 ± 0.02 nA µM-1) and a low limit of detection (0.33 ± 0.20 µM). Thus, these Pt MEAs provide an excellent microelectrode platform for multisite O2 recording in vivo in the extracellular space of the brain, demonstrated in anaesthetized rats, and hold promise for future in vivo studies in animal models of CNS disease and dysfunction.
Asunto(s)
Encéfalo/metabolismo , Cerámica/química , Espectroscopía Dieléctrica , Oxígeno/análisis , Platino (Metal)/química , Animales , Catálisis , Electrólitos/química , Masculino , Microelectrodos , Oxígeno/química , Ratas , Ratas WistarRESUMEN
Attention-deficit/hyperactivity disorder (ADHD) and developmental stress are considered risk factors for the development of drug abuse. Though the physiological mechanisms underlying this risk are not yet clear, ADHD, developmental stress and drug abuse are known to share underlying disturbances in dopaminergic neurotransmission. Thus, we hypothesized that clearance of cocaine-induced elevations in striatal dopamine would be prolonged in a rat model of ADHD and that this would be further increased by exposure to developmental stress. In the current study, male spontaneously hypertensive rats (SHRs), a well-validated model of ADHD, and control Wistar-Kyoto (WKY) rats were exposed to either standard rearing (nMS) or a maternal separation (MS) paradigm involving removal of the pups from the dam for 180 min/day over 13 days. This produced a 2 × 2 factorial design (SHR/WKY × nMS/MS) with 5-6 rats/group. Striatal clearance of exogenously applied dopamine was measured via in vivo chronoamperometry, and the difference in dopamine uptake parameters before and after cocaine administration was compared between experimental groups. Cocaine, a potent dopamine transporter inhibitor, reliably increased the clearance time of dopamine though no difference in this parameter was found between SHR and WKY strains. However, developmental stress elevated the cocaine-induced increase in time to clear 50% of exogenously applied dopamine (T50) in SHR but had no effect in WKY rats. These findings suggest that a strain × environment interaction prolongs elevated levels of dopamine thereby potentially increasing the rewarding properties of this drug in SHR.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Privación Materna , Neostriado/efectos de los fármacos , Animales , Atención , Modelos Animales de Enfermedad , Masculino , Neostriado/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKYRESUMEN
Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance.
Asunto(s)
Sustitución de Aminoácidos , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Mutación Missense , Mutación Puntual , Memoria Espacial/fisiología , Proteínas tau/genética , Animales , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Exocitosis/fisiología , Hipocampo/citología , Humanos , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Potasio/farmacología , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas tau/química , Proteínas tau/fisiologíaRESUMEN
Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.5 mg/kg/day p.o.), an FDA-approved drug for amyotrophic lateral sclerosis that lowers extracellular glutamate levels. Riluzole-treated TauP301L mice exhibited improved performance in the water radial arm maze and the Morris water maze, associated with a decrease in glutamate release and an increase in glutamate uptake in the dentate gyrus, cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions of the hippocampus. Riluzole also attenuated the TauP301L-mediated increase in hippocampal vesicular glutamate transporter 1, which packages glutamate into vesicles and influences glutamate release; and the TauP301L-mediated decrease in hippocampal glutamate transporter 1, the major transporter responsible for removing glutamate from the extracellular space. The TauP301L-mediated reduction in PSD-95 expression, a marker of excitatory synapses in the hippocampus, was also rescued by riluzole. Riluzole treatment reduced total levels of tau, as well as the pathological phosphorylation and conformational changes in tau associated with the P301L mutation. These findings open new opportunities for the development of clinically applicable therapeutic approaches to regulate glutamate in vulnerable circuits for those at risk for the development of AD.
Asunto(s)
Trastornos del Conocimiento/prevención & control , Trastornos del Conocimiento/psicología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Fármacos Neuroprotectores/farmacología , Riluzol/farmacología , Tauopatías/prevención & control , Tauopatías/psicología , Proteínas tau/biosíntesis , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/psicología , Animales , Química Encefálica/efectos de los fármacos , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Sinapsis/efectos de los fármacos , Sinapsis/patología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismoRESUMEN
OBJECTIVE: Characterize glutamate neurotransmission in the hippocampus of awake-behaving rodents during focal seizures in a model of aging. METHODS: We used enzyme-based ceramic microelectrode array technology to measure in vivo extracellular tonic glutamate levels and real-time phasic glutamate release and clearance events in the hippocampus of awake Fischer 344 rats. Local application of 4-aminopyridine (4-AP) into the CA1 region was used to induce focal motor seizures in different animal age groups representing young, late-middle aged and elderly humans. RESULTS: Rats with the highest preseizure tonic glutamate levels (all in late-middle aged or elderly groups) experienced the most persistent 4-AP-induced focal seizure motor activity (wet dog shakes) and greatest degree of acute seizure-associated disruption of glutamate neurotransmission measured as rapid transient changes in extracellular glutamate levels. SIGNIFICANCE: Increased seizure susceptibility was demonstrated in the rats with the highest baseline hippocampal extracellular glutamate levels, all of which were late-middle aged or aged animals. The manifestation of seizures behaviorally was associated with dynamic changes in glutamate neurotransmission. To our knowledge, this is the first report of a relationship between seizure susceptibility and alterations in both baseline tonic and phasic glutamate neurotransmission.
Asunto(s)
Envejecimiento/fisiología , Región CA1 Hipocampal/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Convulsiones/metabolismo , 4-Aminopiridina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Región CA1 Hipocampal/efectos de los fármacos , Masculino , Ratas Endogámicas F344 , Convulsiones/inducido químicamente , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiologíaRESUMEN
Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.
RESUMEN
Epilepsy is a prevalent neurological disorder with a complex pathogenesis and unpredictable nature, presenting limited treatment options in >30 % of affected individuals. Neurometabolic abnormalities have been observed in epilepsy patients, suggesting a disruption in the coupling between neural activity and energy metabolism in the brain. In this study, we employed amperometric biosensors based on a modified carbon fiber microelectrode platform to directly and continuously measure lactate and oxygen dynamics in the brain extracellular space. These biosensors demonstrated high sensitivity, selectivity, and rapid response time, enabling in vivo measurements with high temporal and spatial resolution. In vivo recordings in the cortex of anaesthetized rats revealed rapid and multiphasic fluctuations in extracellular lactate and oxygen levels following neuronal stimulation with high potassium. Furthermore, real-time measurement of lactate and oxygen concentration dynamics concurrently with network electrical activity during status epilepticus induced by 4-aminopyridine (4-AP) demonstrated phasic changes in lactate levels that correlated with bursts of electrical activity, while tonic levels of lactate remained stable during seizures. This study highlights the complex interplay between lactate dynamics, electrical activity, and oxygen utilization in epileptic seizures.
Asunto(s)
Técnicas Biosensibles , Epilepsia , Estado Epiléptico , Humanos , Ratas , Animales , Ácido Láctico/metabolismo , Oxígeno , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Encéfalo/metabolismo , Convulsiones/metabolismo , 4-AminopiridinaRESUMEN
Monoamine oxidase (MAO) is an enzyme located on the outer mitochondrial membrane that metabolizes amine substrates like serotonin, norepinephrine and dopamine. MAO inhibitors (MAOIs) are frequently utilized to treat disorders such as major depression or Parkinson's disease (PD), though their effects on brain mitochondrial bioenergetics are unclear. These studies measured bioenergetic activity in mitochondria isolated from the mouse cortex in the presence of inhibitors of either MAO-A, MAO-B, or both isoforms. We found that only 10 µM clorgyline, the selective inhibitor of MAO-A and not MAO-B, increased mitochondrial oxygen consumption rate in State V(CI) respiration compared to vehicle treatment. We then assessed mitochondrial bioenergetics, reactive oxygen species (ROS) production, and Electron Transport Chain (ETC) complex function in the presence of 0, 5, 10, 20, 40, or 80 µM of clorgyline to determine if this change was dose-dependent. The results showed increased oxygen consumption rates across the majority of respiration states in mitochondria treated with 5, 10, or 20 µM with significant bioenergetic inhibition at 80 µM clorgyline. Next, we assessed mitochondrial ROS production in the presence of the same concentrations of clorgyline in two different states: high mitochondrial membrane potential (ΔΨm) induced by oligomycin and low ΔΨm induced by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). There were no changes in ROS production in the presence of 5, 10, 20, or 40 µM clorgyline compared to vehicle after the addition of oligomycin or FCCP. There was a significant increase in mitochondrial ROS in the presence of 80 µM clorgyline after FCCP addition, as well as reduced Complex I and Complex II activities, which are consistent with inhibition of bioenergetics seen at this dose. There were no changes in Complex I, II, or IV activities in mitochondria treated with low doses of clorgyline. These studies shed light on the direct effect of MAO-A inhibition on brain mitochondrial bioenergetic function, which may be a beneficial outcome for those taking these medications.
Asunto(s)
Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Ratones , Animales , Monoaminooxidasa/metabolismo , Clorgilina/farmacología , Clorgilina/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Especies Reactivas de Oxígeno/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Mitocondrias/metabolismo , RespiraciónRESUMEN
We sought to design a data visualization platform to represent the Movement Disorder Society- Unified Parkinson's Disease Rating Scale (MDS-UPDRS) item scores in an easy-to-use display without modification of the raw data or summary scores. Score items for Parts I, II, and IV were arranged as separate inline blocks, while Part III item blocks were arranged in an anatomical fashion. A color scale was created to represent symptom severity and changes observed from one exam to another. We have found the visualization helpful for quickly defining the most troublesome symptoms and their anatomical location enabling communication of the results and interpretations.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Sociedades Médicas , Pruebas de Estado Mental y DemenciaRESUMEN
Parkinson's disease (PD) is a severe neurological disease for which there is no effective treatment or cure, and therefore it remains an unmet need in medicine. We present data from four participants who received autologous transplantation of small pieces of sural nerve tissue into either the basal forebrain containing the nucleus basalis of Meynert (NBM) or the midbrain substantia nigra (SN). The grafts did not exhibit significant cell death or severe host-tissue reaction up to 55 months post-grafting and contained peripheral cells. Dopaminergic neurites showed active growth in the graft area and into the graft in the SN graft, and cholinergic neurites were abundant near the graft in the NBM. These results provide a histological basis for changes in clinical features after autologous peripheral nerve tissue grafting into the NBM or SN in PD.
RESUMEN
A common denominator for many cognitive disorders of human brain is the disruption of neural activity within pFC, whose structural basis is primarily interlaminar (columnar) microcircuits or "minicolumns." The importance of this brain region for executive decision-making has been well documented; however, because of technological constraints, the minicolumnar basis is not well understood. Here, via implementation of a unique conformal multielectrode recording array, the role of interlaminar pFC minicolumns in the executive control of task-related target selection is demonstrated in nonhuman primates performing a visuomotor DMS task. The results reveal target-specific, interlaminar correlated firing during the decision phase of the trial between multielectrode recording array-isolated minicolumnar pairs of neurons located in parallel in layers 2/3 and layer 5 of pFC. The functional significance of individual pFC minicolumns (separated by 40 µm) was shown by reduced correlated firing between cell pairs within single minicolumns on error trials with inappropriate target selection. To further demonstrate dependence on performance, a task-disrupting drug (cocaine) was administered in the middle of the session, which also reduced interlaminar firing in minicolumns that fired appropriately in the early (nondrug) portion of the session. The results provide a direct demonstration of task-specific, real-time columnar processing in pFC indicating the role of this type of microcircuit in executive control of decision-making in primate brain.
Asunto(s)
Función Ejecutiva/fisiología , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Animales , Cocaína/farmacología , Cognición/efectos de los fármacos , Interpretación Estadística de Datos , Dopamina/fisiología , Inhibidores de Captación de Dopamina/farmacología , Electrodos Implantados , Fenómenos Electrofisiológicos/fisiología , Función Ejecutiva/efectos de los fármacos , Macaca mulatta , Red Nerviosa/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiologíaRESUMEN
The potential anxiolytic effects of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor subgroup 2 (mGluR2) were investigated using a self-referencing recording technique with enzyme-based microelectrode arrays (MEAs) that reliably measures tonic and phasic changes in extracellular glutamate levels in awake rats. Studies involved glutamate measures in the rat prefrontal cortex during subcutaneous injections of the following: vehicle, a mGluR2/3 agonist, LY354740 (10 mg/kg), or a mGluR2 PAM, 1-Methyl-2-((cis-(R,R)-3-methyl-4-(4-trifluoromethoxy-2-fluoro)phenyl)piperidin-1-yl)methyl)-1H-imidazo[4,5-b]pyridine ((+)-TFMPIP; 1.0 or 17.8 mg/kg). Studies assessed changes in tonic glutamate levels and the glutamatergic responses to a 5-min restraint stress. Subcutaneous injection of (+)-TFMPIP at a dose of 1.0 mg/kg (day 3: -7.1 ± 15.1 net AUC; day 5: -24.8 ± 24.9 net AUC) and 17.8 mg/kg (day 3: -46.5 ± 33.0 net AUC; day 5: 34.6 ± 36.8 net AUC) significantly attenuated the stress-evoked glutamate release compared to vehicle controls (day 3: 134.7 ± 50.6 net AUC; day 5: 286.6 ± 104.5 net AUC), whereas the mGluR2/3 agonist LY354740 had no effect. None of the compounds significantly affected resting glutamate levels, which we have recently shown to be extensively derived from neurons. Taken together, these data support that systemic administration of (+)-TFMPIP produces phasic rather than tonic release of glutamate that may play a major role in the effects of stress on glutamate neuronal systems in the prefrontal cortex.
Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ácido Glutámico/metabolismo , Piperidinas/farmacología , Corteza Prefrontal/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Restricción Física/fisiología , Regulación Alostérica , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Compuestos Bicíclicos con Puentes/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Masculino , Microelectrodos , Ratas , Ratas Sprague-Dawley , Restricción Física/métodos , VigiliaRESUMEN
PURPOSE: To correlate kindling-associated alterations of the neurotransmitter secretory machinery, glutamate release in the trisynaptic hippocampal excitatory pathway, and the behavioral evolution of kindling-induced epileptogenesis. METHOD: Neurotransmitter release requires the fusion of vesicle and plasma membranes; it is initiated by formation of a stable, ternary complex (7SC) of SNARE [soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptor] proteins. Quantitative Western blotting was used to monitor levels of 7SC and SNARE regulators [NSF, SV2 (synaptic vesicle protein 2)] in hippocampal synaptosomes from amygdala-kindled animals. Hippocampal synaptic glutamate release was measured in vivo with a unique microelectrode array (MEA) that uses glutamate oxidase to catalyze the breakdown of glutamate into a reporter molecule. KEY FINDINGS: Ipsilateral hippocampal accumulation of 7SC developed with onset of amygdalar kindling, but became permanent only in animals stimulated to at least Racine stage 3; the ratio peaked and did not increase with more than two consecutive stage 5 seizures. Chronic 7SC asymmetry was seen in entorhinal cortex and the hippocampal formation, particularly in dentate gyrus (DG) and CA1, but not in the other brain areas examined. There was a strong correlation between asymmetric 7SC accumulation and increased total hippocampal SV2. Following a 30-day latent period, amplitudes of spontaneous synaptic glutamate release were enhanced in ipsilateral DG and reduced in ipsilateral CA3 of kindled animals; increased volleys of synaptic glutamate activity were seen in ipsilateral CA1. SIGNIFICANCE: Amygdalar kindling is associated with chronic changes in the flow of glutamate signaling in the excitatory trisynaptic pathway and with early but permanent changes in the mechanics of vesicular release in ipsilateral hippocampal formation.