Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Planta ; 251(2): 45, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915930

RESUMEN

MAIN CONCLUSION: Adaptation of the xylem under dehydration to smaller sized vessels and the increase in xylem density per stem area facilitate water transport during water-limiting conditions, and this has implications for assimilate transport during drought. The potato stem is the communication and transport channel between the assimilate-exporting source leaves and the terminal sink tissues of the plant. During environmental stress conditions like water scarcity, which adversely affect the performance (canopy growth and tuber yield) of the potato plant, the response of stem tissues is essential, however, still understudied. In this study, we investigated the response of the stem tissues of cultivated potato grown in the greenhouse to dehydration using a multidisciplinary approach including physiological, biochemical, morphological, microscopic, and magnetic resonance imaging techniques. We observed the most significant effects of water limitation in the lower stem regions of plants. The light microscopy analysis of the potato stem sections revealed that plants exposed to this particular dehydration stress have higher total xylem density per unit area than control plants. This increase in the total xylem density was accompanied by an increase in the number of narrow-diameter xylem vessels and a decrease in the number of large-diameter xylem vessels. Our MRI approach revealed a diurnal rhythm of xylem flux between day and night, with a reduction in xylem flux that is linked to dehydration sensitivity. We also observed that sink strength was the main driver of assimilate transport through the stem in our data set. These findings may present potential breeding targets for drought tolerance in potato.


Asunto(s)
Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Xilema/metabolismo , Xilema/fisiología , Adaptación Fisiológica/fisiología , Transporte Biológico/fisiología , Sequías , Imagen por Resonancia Magnética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología
2.
Plant Cell Environ ; 38(3): 433-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24995994

RESUMEN

Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non-invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ(13) C in leaves, roots and phloem saps were determined. Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N2 treatment. However, volume flow and phloem sap sugar tended to recover during the N2 treatment. Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia.


Asunto(s)
Carbono/metabolismo , Oxígeno/metabolismo , Ricinus communis/metabolismo , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Ricinus communis/efectos de los fármacos , Nitrógeno/farmacología , Floema/efectos de los fármacos , Floema/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Almidón/metabolismo , Agua/metabolismo , Xilema/efectos de los fármacos , Xilema/metabolismo
3.
Water Sci Technol ; 65(10): 1875-81, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22546805

RESUMEN

Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as ethylenediaminetetraacetate (EDTA) or diethylenetriaminepentaacetate (DTPA). It has been shown that although the stimulating effect of the complexed metal species (e.g. [CoEDTA](2-)) is very fast, it is not sustainable when applied to metal-limited continuously operated reactors. The present paper describes transport phenomena taking place inside single methanogenic granules when the granules are exposed to various metal species. This was done using magnetic resonance imaging (MRI). The MRI results were subsequently related to technological observations such as changes in methanogenic activity upon cobalt injection into cobalt-limited up-flow anaerobic sludge blanket (UASB) reactors. It was shown that transport of complexed metal species is fast (minutes to tens of minutes) and complexed metal can therefore quickly reach the entire volume of the granule. Free metal species tend to interact with the granular matrix resulting in slower transport (tens of minutes to hours) but higher final metal concentrations.


Asunto(s)
Bacterias Anaerobias/metabolismo , Metales Pesados/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Reactores Biológicos , Metales Pesados/metabolismo , Metanol/química , Eliminación de Residuos Líquidos/métodos
4.
Eur Biophys J ; 39(4): 699-710, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19921172

RESUMEN

A method for mapping tissue permeability based on time-dependent diffusion measurements is presented. A pulsed field gradient sequence to measure the diffusion encoding time dependence of the diffusion coefficients based on the detection of stimulated spin echoes to enable long diffusion times is combined with a turbo spin echo sequence for fast NMR imaging (MRI). A fitting function is suggested to describe the time dependence of the apparent diffusion constant in porous (bio-)materials, even if the time range of the apparent diffusion coefficient is limited due to relaxation of the magnetization. The method is demonstrated by characterizing anisotropic cell dimensions and permeability on a subpixel level of different tissues of a carrot (Daucus carota) taproot in the radial and axial directions.


Asunto(s)
Daucus carota/citología , Daucus carota/metabolismo , Tamaño de la Célula , Difusión , Imagen por Resonancia Magnética , Permeabilidad , Factores de Tiempo
5.
Tree Physiol ; 39(6): 1009-1018, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30896019

RESUMEN

Reactivation of axial water flow in ring-porous species is a complex process related to stem water content and developmental stage of both earlywood-vessel and leaf formation. Yet empirical evidence with non-destructive methods on the dynamics of water flow resumption in relation to these mechanisms is lacking. Here we combined in vivo magnetic resonance imaging and wood-anatomical observations to monitor the dynamic changes in stem water content and flow during spring reactivation in 4-year-old pedunculate oaks (Quercus robur L.) saplings. We found that previous year latewood vessels and current year developing earlywood vessels form a functional unit for water flow during growth resumption. During spring reactivation, water flow shifted from latewood towards the new earlywood, paralleling the formation of earlywood vessels and leaves. At leaves' full expansion, volumetric water content of previous rings drastically decreased due to the near-absence of water in fibre tissue. We conclude (i) that in ring-porous oak, latewood vessels play an important hydraulic role for bridging the transition between old and new water-conducting vessels and (ii) that fibre and parenchyma provides a place for water storage.


Asunto(s)
Quercus/fisiología , Agua/metabolismo , Madera/fisiología , Imagen por Resonancia Magnética , Porosidad , Estaciones del Año
6.
Front Plant Sci ; 7: 895, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446125

RESUMEN

Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0-5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl.

7.
J Magn Reson ; 175(1): 21-9, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15949745

RESUMEN

Multidimensional images of Al2O3 pellets, cordierite monolith, glass tube, polycrystalline V2O5 and other materials have been detected by 27Al, 51V, and 23Na NMR imaging using techniques and instrumentation conventionally employed for imaging of liquids. These results demonstrate that, contrary to the widely accepted opinion, imaging of "rigid" solids does not necessarily require utilization of solid state NMR imaging approaches, pulse sequences and hardware even for quadrupolar nuclei which exhibit line widths in excess of 100 kHz, such as 51V in polycrystalline V2O5. It is further demonstrated that both 27Al NMR signal intensity and spin-lattice relaxation time decrease with increasing temperature and thus can potentially serve as temperature sensitive parameters for spatially resolved NMR thermometry.


Asunto(s)
Algoritmos , Óxido de Aluminio/análisis , Óxido de Aluminio/química , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Termografía/métodos , Aluminio , Catálisis , Interpretación de Imagen Asistida por Computador/instrumentación , Imagen por Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/instrumentación , Polvos/análisis , Polvos/química , Soluciones , Temperatura , Termografía/instrumentación
8.
J Magn Reson ; 171(1): 157-62, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15504695

RESUMEN

The RARE imaging method was used to monitor the cooking of single rice kernels in real time and with high spatial resolution in three dimensions. The imaging sequence is optimized for rapid acquisition of signals with short relaxation times using centered out RARE. Short scan time and high spatial resolution are critical factors in the investigation of the cooking behavior of rice kernels since time and spatial averaging may lead to erroneous results. The results are confirming the general pattern of moisture ingress that has been suspected from previous (more limited) studies. Water uptake as determined by analysis of the MRI time series recorded during cooking compares well with gravimetric studies. This allows using these real-time MRI data for developing and validating models that describe the effect of kernel microstructure on its cooking behavior.


Asunto(s)
Culinaria , Imagen por Resonancia Magnética/métodos , Oryza , Procesamiento de Imagen Asistido por Computador , Factores de Tiempo , Agua
9.
Faraday Discuss ; 158: 65-75; discussion 105-24, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23234161

RESUMEN

Magnetic resonance imaging (MRI) offers unique opportunities to monitor moisture transport during drying or heating of food, which can render unexpected insights. Here, we report about MRI observations made during the drying of broccoli stalks indicating anomalous drying behaviour. In fresh broccoli samples the moisture content in the core of the sample increases during drying, which conflicts with Fickian diffusion. We have put the hypothesis that this increase of moisture is due to the stress diffusion induced by the elastic impermeable skin. Pre-treatments that change skin and bulk elastic properties of broccoli show that our hypothesis of stress-diffusion is plausible.


Asunto(s)
Brassica/química , Análisis de los Alimentos/métodos , Tallos de la Planta/química , Agua/análisis , Desecación , Difusión , Elasticidad , Tecnología de Alimentos , Calor , Imagen por Resonancia Magnética
10.
J Food Sci ; 75(7): E417-25, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21535535

RESUMEN

Proton nuclear magnetic resonance (¹H-NMR) relaxometry was used to study the effects of high pressure and thermal processing on membrane permeability and cell compartmentalization, important components of plant tissue texture. High pressure treated onions were subjected to pressure levels from 20 to 200 MPa at 5 min hold time at initial temperatures of 5 and 20 °C. Thermally treated onions were exposed for 30 min at temperatures from 40 to 90 °C. Loss of membrane integrity was clearly shown by changes in transverse relaxation time (T(2)) of water at temperatures of 60 °C and above. Destabilization effects on membranes exposed to high pressure were observed at 200 MPa as indicated by T(2) measurements and cryo-scanning electron microscopy (Cryo-SEM). T(2) relaxation successfully discriminated different degrees of membrane damage based on the T(2) shift of the vacuolar component. Analyses of the average water self-diffusion coefficient indicated less restricted diffusion after membrane rupture occurred in cases of severe thermal treatments. Milder processing treatments yielded lower average diffusion coefficients than the controls. ¹H-NMR proved to be an effective method for quantification of cell membrane damage in onions and allowed for the comparison of different food processes based on their impact on tissue integrity.


Asunto(s)
Membrana Celular/ultraestructura , Análisis de los Alimentos/métodos , Manipulación de Alimentos/métodos , Cebollas/ultraestructura , Raíces de Plantas/ultraestructura , Permeabilidad de la Membrana Celular , Pared Celular/ultraestructura , Fenómenos Químicos , Difusión , Calor/efectos adversos , Membranas Intracelulares/ultraestructura , Cinética , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Orgánulos/ultraestructura , Presión/efectos adversos , Agua/química
11.
Plant Physiol ; 151(2): 830-42, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19710234

RESUMEN

In this study, we demonstrate nuclear magnetic resonance flow imaging of xylem and phloem transport toward a developing tomato (Solanum lycopersicum) truss. During an 8-week period of growth, we measured phloem and xylem fluxes in the truss stalk, aiming to distinguish the contributions of the two transport tissues and draw up a balance between influx and efflux. It is commonly estimated that about 90% of the water reaches the fruit by the phloem and the remaining 10% by the xylem. The xylem is thought to become dysfunctional at an early stage of fruit development. However, our results do not corroborate these findings. On the contrary, we found that xylem transport into the truss remained functional throughout the 8 weeks of growth. During that time, at least 75% of the net influx into the fruit occurred through the external xylem and about 25% via the perimedullary region, which contains both phloem and xylem. About one-half of the net influx was lost due to evaporation. Halfway through truss development, a xylem backflow appeared. As the truss matured, the percentage of xylem water that circulated into the truss and out again increased in comparison with the net uptake, but no net loss of water from the truss was observed. The circulation of xylem water continued even after the fruits and pedicels were removed. This indicates that neither of them was involved in generating or conducting the circulation of sap. Only when the main axis of the peduncle was cut back did the circulation stop.


Asunto(s)
Floema/fisiología , Reología/métodos , Solanum lycopersicum/fisiología , Agua/fisiología , Xilema/fisiología , Transporte Biológico , Solanum lycopersicum/crecimiento & desarrollo , Espectroscopía de Resonancia Magnética
12.
J Magn Reson ; 200(2): 303-12, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656698

RESUMEN

Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.7 5mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109x109x218 microm(3) and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/T(1)) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron-EDTA complex ([FeEDTA](2-)) to penetrate into the methanogenic granules (3-4mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick's equations for diffusion in a sphere, because immobilization of [FeEDTA](2-) in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient (D(ejf)) of [FeEDTA](2-) was found to be 2.8x10(-11)m(2)s(-1), i.e. approximately 4% of D(ejf) of [FeEDTA](2-) in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3-5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.


Asunto(s)
Biopelículas , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Ensayo de Materiales/métodos , Methanomicrobiaceae/citología , Methanomicrobiaceae/metabolismo , Microscopía/métodos , Transporte Biológico Activo/fisiología , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA