Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
3.
Kidney Int ; 92(5): 1130-1144, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28729032

RESUMEN

Autosomal recessive polycystic kidney disease (OMIM 263200) is a serious condition of the kidney and liver caused by mutations in a single gene, PKHD1. This gene encodes fibrocystin/polyductin (FPC, PD1), a large protein shown by in vitro studies to undergo Notch-like processing. Its cytoplasmic tail, reported to include a ciliary targeting sequence, a nuclear localization signal, and a polycystin-2 binding domain, is thought to traffic to the nucleus after cleavage. We now report a novel mouse line with a triple HA-epitope "knocked-in" to the C-terminus along with lox P sites flanking exon 67, which encodes most of the C-terminus (Pkhd1Flox67HA). The triple HA-epitope has no functional effect as assayed by phenotype and allows in vivo tracking of Fibrocystin. We used the HA tag to identify previously predicted Fibrocystin cleavage products in tissue. In addition, we found that Polycystin-2 fails to co-precipitate with Fibrocystin in kidney samples. Immunofluorescence studies with anti-HA antibodies demonstrate that Fibrocystin is primarily present in a sub-apical location the in kidney, biliary duct, and pancreatic ducts, partially overlapping with the Golgi. In contrast to previous studies, the endogenous protein in the primary cilia was not detectable in mouse tissues. After Cre-mediated deletion, homozygous Pkhd1Δ67 mice are completely normal. Thus, Pkhd1Flox67HA is a valid model to track Pkhd1-derived products containing the C-terminus. Significantly, exon 67 containing the nuclear localization signal and the polycystin-2 binding domain is not essential for Fibrocystin function in our model.


Asunto(s)
Riñón/metabolismo , Riñón Poliquístico Autosómico Recesivo/genética , Dominios Proteicos/genética , Receptores de Superficie Celular/genética , Canales Catiónicos TRPP/metabolismo , Animales , Cilios/metabolismo , Modelos Animales de Enfermedad , Epítopos/genética , Exones/genética , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Riñón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fragmentos de Péptidos/genética , Fenotipo , Riñón Poliquístico Autosómico Recesivo/metabolismo , Receptores de Superficie Celular/metabolismo
4.
J Am Soc Nephrol ; 26(9): 2081-95, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25952256

RESUMEN

Polycystic kidney disease (PKD) is one of the most common life-threatening genetic diseases. Jared J. Grantham, M.D., has done more than any other individual to promote PKD research around the world. However, despite decades of investigation there is still no approved therapy for PKD in the United States. In May 2014, the University of Kansas Medical Center hosted a symposium in Kansas City honoring the occasion of Dr. Grantham's retirement and invited all the awardees of the Lillian Jean Kaplan International Prize for Advancement in the Understanding of Polycystic Kidney Disease to participate in a forward-thinking and interactive forum focused on future directions and innovations in PKD research. This article summarizes the contributions of the 12 Kaplan awardees and their vision for the future of PKD research.


Asunto(s)
Investigación Biomédica/tendencias , Cilios/genética , Riñón Poliquístico Autosómico Dominante/genética , Transducción de Señal , Canales Catiónicos TRPP/genética , Animales , Cilios/metabolismo , Genes Modificadores , Humanos , Túbulos Renales , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Terapia Molecular Dirigida , Complejos Multiproteicos/metabolismo , Fenotipo , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/patología , Insuficiencia Renal/prevención & control , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPP/metabolismo
5.
PLoS Genet ; 8(11): e1003053, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209428

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD; MIM ID's 173900, 601313, 613095) leads to end-stage kidney disease, caused by mutations in PKD1 or PKD2. Inactivation of Pkd1 before or after P13 in mice results in distinct early- or late-onset disease. Using a mouse model of ADPKD carrying floxed Pkd1 alleles and an inducible Cre recombinase, we intensively analyzed the relationship between renal maturation and cyst formation by applying transcriptomics and metabolomics to follow disease progression in a large number of animals induced before P10. Weighted gene co-expression network analysis suggests that Pkd1-cystogenesis does not cause developmental arrest and occurs in the context of gene networks similar to those that regulate/maintain normal kidney morphology/function. Knowledge-based Ingenuity Pathway Analysis (IPA) software identifies HNF4α as a likely network node. These results are further supported by a meta-analysis of 1,114 published gene expression arrays in Pkd1 wild-type tissues. These analyses also predict that metabolic pathways are key elements in postnatal kidney maturation and early steps of cyst formation. Consistent with these findings, urinary metabolomic studies show that Pkd1 cystic mutants have a distinct profile of excreted metabolites, with pathway analysis suggesting altered activity in several metabolic pathways. To evaluate their role in disease, metabolic networks were perturbed by inactivating Hnf4α and Pkd1. The Pkd1/Hnf4α double mutants have significantly more cystic kidneys, thus indicating that metabolic pathways could play a role in Pkd1-cystogenesis.


Asunto(s)
Redes Reguladoras de Genes , Factor Nuclear 4 del Hepatocito , Riñón Poliquístico Autosómico Dominante , Proteína Quinasa C , Alelos , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Ratones , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
6.
J Am Soc Nephrol ; 25(1): 81-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24071006

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of renal failure that is due to mutations in two genes, PKD1 and PKD2. Vascular complications, including aneurysms, are a well recognized feature of ADPKD, and a subgroup of families exhibits traits reminiscent of Marfan syndrome (MFS). MFS is caused by mutations in fibrillin-1 (FBN1), which encodes an extracellular matrix protein with homology to latent TGF-ß binding proteins. It was recently demonstrated that fibrillin-1 deficiency is associated with upregulation of TGF-ß signaling. We investigated the overlap between ADPKD and MFS by breeding mice with targeted mutations in Pkd1 and Fbn1. Double heterozygotes displayed an exacerbation of the typical Fbn1 heterozygous aortic phenotype. We show that the basis of this genetic interaction results from further upregulation of TGF-ß signaling caused by Pkd1 haploinsufficiency. In addition, we demonstrate that loss of PKD1 alone is sufficient to induce a heightened responsiveness to TGF-ß. Our data link the interaction of two important diseases to a fundamental signaling pathway.


Asunto(s)
Proteínas de Microfilamentos/genética , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Factor de Crecimiento Transformador beta/metabolismo , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo , Animales , Modelos Animales de Enfermedad , Epistasis Genética , Femenino , Fibrilina-1 , Fibrilinas , Estudios de Asociación Genética , Haploinsuficiencia , Heterocigoto , Humanos , Masculino , Síndrome de Marfan/etiología , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Proteínas de Microfilamentos/deficiencia , Mutación , Riñón Poliquístico Autosómico Dominante/complicaciones , Transducción de Señal , Canales Catiónicos TRPP/deficiencia , Enfermedades Vasculares/etiología
7.
Hum Mol Genet ; 21(26): 5456-71, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23001567

RESUMEN

Autosomal-dominant polycystic kidney disease (ADPKD) and von Hippel-Lindau (VHL) disease lead to large kidney cysts that share pathogenetic features. The polycystin-1 (PC1) and pVHL proteins may therefore participate in the same key signaling pathways. Jade-1 is a pro-apoptotic and growth suppressive ubiquitin ligase for beta-catenin and transcriptional coactivator associated with histone acetyltransferase activity that is stabilized by pVHL in a manner that correlates with risk of VHL renal disease. Thus, a relationship between Jade-1 and PC1 was sought. Full-length PC1 bound, stabilized and colocalized with Jade-1 and inhibited Jade-1 ubiquitination. In contrast, the cytoplasmic tail or the naturally occurring C-terminal fragment of PC1 (PC1-CTF) promoted Jade-1 ubiquitination and degradation, suggesting a dominant-negative mechanism. ADPKD-associated PC1 mutants failed to regulate Jade-1, indicating a potential disease link. Jade-1 ubiquitination was mediated by Siah-1, an E3 ligase that binds PC1. By controlling Jade-1 abundance, PC1 and the PC1-CTF differentially regulate Jade-1-mediated transcriptional activity. A key target of PC1, the cyclin-dependent kinase inhibitor p21, is also up-regulated by Jade-1. Through Jade-1, PC1 and PC1 cleaved forms may exert fine control of beta-catenin and canonical Wnt signaling, a critical pathway in cystic renal disease. Thus, Jade-1 is a transcription factor and ubiquitin ligase whose activity is regulated by PC1 in a manner that is physiologic and may correlate with disease. Jade-1 may be an important therapeutic target in renal cystogenesis.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Canales Catiónicos TRPP/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Apoptosis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HEK293 , Semivida , Proteínas de Homeodominio/genética , Humanos , Riñón/citología , Riñón/patología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Canales Catiónicos TRPP/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/metabolismo
8.
Biochem Biophys Res Commun ; 444(4): 473-9, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24472557

RESUMEN

The PKD1 gene is essential for a number of biological functions, and its loss-of-function causes autosomal dominant polycystic kidney disease (ADPKD). The gene is developmentally regulated and believed to play an essential role in renal development. Previous studies have shown that manipulating murine renal organ cultures with dominant-negative forms of the Pkd1 gene impaired ureteric bud (UB) branching. In the current study, we analyzed different stages of renal development in two distinct mouse models carrying either a null mutation or inactivation of the last two exons of Pkd1. Surprisingly, metanephric explants from Pkd1-deleted kidneys harvested at day E11.5 did not show defects of UB branching and elongation, estimated by cytokeratin staining on fixed tissues or by Hoxb7-GFP time-lapse imaging. However, renal explants from Pkd1-mutants isolated at day E14.5 showed impaired nephrogenesis. Notably, we observed cell migratory defects in the developing endothelial compartment. Previous studies had implicated the Pkd1 gene in controlling cell migration and collagen deposition through PI3 kinases. In line with these studies, our results show that wild-type explants treated with PI3-kinase inhibitors recapitulate the endothelial defects observed in Pkd1 mutants, whereas treatment with VEGF only partially rescued the defects. Our data are consistent with a role for the Pkd1 gene in the endothelium that may be required for proper nephrogenesis.


Asunto(s)
Glomérulos Renales/embriología , Glomérulos Renales/fisiopatología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/fisiopatología , Canales Catiónicos TRPP/genética , Animales , Movimiento Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Eliminación de Gen , Glomérulos Renales/metabolismo , Ratones , Mutación , Técnicas de Cultivo de Órganos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Canales Catiónicos TRPP/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(24): 9833-8, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21622852

RESUMEN

Mutations in PKD2 are responsible for approximately 15% of the autosomal dominant polycystic kidney disease cases. This gene encodes polycystin-2, a calcium-permeable cation channel whose C-terminal intracytosolic tail (PC2t) plays an important role in its interaction with a number of different proteins. In the present study, we have comprehensively evaluated the macromolecular assembly of PC2t homooligomer using a series of biophysical and biochemical analyses. Our studies, based on a new delimitation of PC2t, have revealed that it is capable of assembling as a homotetramer independently of any other portion of the molecule. Our data support this tetrameric arrangement in the presence and absence of calcium. Molecular dynamics simulations performed with a modified all-atoms structure-based model supported the PC2t tetrameric assembly, as well as how different populations are disposed in solution. The simulations demonstrated, indeed, that the best-scored structures are the ones compatible with a fourfold oligomeric state. These findings clarify the structural properties of PC2t domain and strongly support a homotetramer assembly of PC2.


Asunto(s)
Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Canales Catiónicos TRPP/química , Secuencia de Aminoácidos , Western Blotting , Calcio/química , Calcio/metabolismo , Dicroismo Circular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Termodinámica , Difracción de Rayos X
10.
Adv Kidney Dis Health ; 30(3): 209-219, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37088523

RESUMEN

Autosomal dominant polycystic kidney disease is the most common inherited cause of end-stage kidney disease worldwide. Most cases result from mutation of either of 2 genes, PKD1 and PKD2, which encode proteins that form a probable receptor/channel complex. Studies suggest that a loss of function of the complex below an indeterminate threshold triggers cyst initiation, which ultimately results in dysregulation of multiple metabolic processes and downstream pathways and subsequent cyst growth. Noncell autonomous factors may also promote cyst growth. In this report, we focus primarily on the process of early cyst formation and factors that contribute to its variability with brief consideration of how new studies suggest this process may be reversible.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Humanos , Canales Catiónicos TRPP/genética , Enfermedades Renales Poliquísticas/genética , Mutación , Riñón Poliquístico Autosómico Dominante/genética
11.
PLoS One ; 18(8): e0289778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540694

RESUMEN

PKD1 is the most commonly mutated gene causing autosomal dominant polycystic kidney disease (ADPKD). It encodes Polycystin-1 (PC1), a putative membrane protein that undergoes a set of incompletely characterized post-transcriptional cleavage steps and has been reported to localize in multiple subcellular locations, including the primary cilium and mitochondria. However, direct visualization of PC1 and detailed characterization of its binding partners remain challenging. We now report a new mouse model with HA epitopes and eGFP knocked-in frame into the endogenous mouse Pkd1 gene by CRISPR/Cas9. Using this model, we sought to visualize endogenous PC1-eGFP and performed affinity-purification mass spectrometry (AP-MS) and network analyses. We show that the modified Pkd1 allele is fully functional but the eGFP-tagged protein cannot be detected without signal amplification by secondary antibodies. Using nanobody-coupled beads and large quantities of tissue, AP-MS identified an in vivo PC1 interactome, which is enriched for mitochondrial proteins and components of metabolic pathways. These studies suggest this mouse model and interactome data will be useful to understand PC1 function, but that new methods and brighter tags will be required to track endogenous PC1.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Canales Catiónicos TRPP/química , Riñón Poliquístico Autosómico Dominante/genética , Modelos Animales de Enfermedad
12.
Biochem Biophys Res Commun ; 425(2): 212-8, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22835934

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), the most common hereditary disease affecting the kidneys, is caused in 85% of cases by mutations in the PKD1 gene. The protein encoded by this gene, polycystin-1, is a renal epithelial cell membrane mechanoreceptor, sensing morphogenetic cues in the extracellular environment, which regulate the tissue architecture and differentiation. However, how such mutations result in the formation of cysts is still unclear. We performed a precise characterization of mesenchymal differentiation using PAX2, WNT4 and WT1 as a marker, which revealed that impairment of the differentiation process preceded the development of cysts in Pkd1(-/-) mice. We performed an in vitro organ culture and found that progesterone and a derivative thereof facilitated mesenchymal differentiation, and partially prevented the formation of cysts in Pkd1(-/-) kidneys. An injection of progesterone or this derivative into the intraperitoneal space of pregnant females also improved the survival of Pkd1(-/-) embryos. Our findings suggest that compounds which enhance mesenchymal differentiation in the nephrogenesis might be useful for the therapeutic approach to prevent the formation of cysts in ADPKD patients.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Quistes/prevención & control , Túbulos Renales/anomalías , Mesodermo/efectos de los fármacos , Riñón Poliquístico Autosómico Dominante/prevención & control , Progesterona/administración & dosificación , Animales , Quistes/embriología , Quistes/genética , Dilatación Patológica/embriología , Dilatación Patológica/prevención & control , Femenino , Mesodermo/citología , Ratones , Ratones Mutantes , Riñón Poliquístico Autosómico Dominante/embriología , Riñón Poliquístico Autosómico Dominante/genética , Embarazo , Canales Catiónicos TRPP/genética
13.
Dev Dyn ; 240(6): 1493-501, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21465620

RESUMEN

Polycystic kidney diseases (PKD) are inherited disorders characterized by fluid-filled cysts primarily in the kidneys. We previously reported differences between the expression of Cux1, p21, and p27 in the cpk and Pkd1 null mouse models of PKD. Embryonic lethality of Pkd1 null mice limits its study to early stages of kidney development. Therefore, we examined mice with a collecting duct specific deletion in the Pkd1 gene. Cux1 was ectopically expressed in the cyst lining epithelial cells of newborn, P7 and P15 Pkd1(CD) mice. Cux1 expression correlated with cell proliferation in early stages of cystogenesis, however, as the disease progressed, fewer cyst lining cells showed increased cell proliferation. Rather, Cux1 expression in late stage cystogenesis was associated with increased apoptosis. Taken together, our results suggest that increased Cux1 expression associated with apoptosis is a common feature of late stage cyst progression in both the cpk and Pkd1(CD) mouse models of PKD.


Asunto(s)
Apoptosis/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Homeodominio/genética , Enfermedades Renales Quísticas/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Canales Catiónicos TRPP/genética , Animales , Animales Recién Nacidos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo , Activación Enzimática/genética , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Túbulos Renales Colectores/metabolismo , Masculino , Ratones , Ratones Transgénicos , Canales Catiónicos TRPP/metabolismo , Transfección , Regulación hacia Arriba/genética
14.
Kidney Int ; 80(2): 146-53, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21389971

RESUMEN

During murine kidney development, canonical WNT signaling is highly active in tubules until about embryonic days E16-E18. At this time, ß-catenin transcriptional activity is progressively restricted to the nephrogenic zone. The cilial protein genes PKD1 and PKD2 are known to be mutated in autosomal dominant polycystic kidney disease (ADPKD), and previous studies proposed that these mutations could lead to a failure to suppress canonical WNT signaling activity. Several in vitro studies have found a link between cilial signaling and ß-catenin regulation, suggesting that aberrant activity might contribute to the cystic phenotype. To study this, we crossed T-cell factor (TCF)/ß-catenin-lacZ reporter mice with mice having Pkd1 or Pkd2 mutations and found that there was no ß-galactosidase staining in cells lining the renal cysts. Thus, suppression of canonical WNT activity, defined by the TCF/ß-catenin-lacZ reporter, is normal in these two different models of polycystic kidney disease. Hence, excessive ß-catenin transcriptional activity may not contribute to cystogenesis in these models of ADPKD.


Asunto(s)
Quistes/etiología , Riñón Poliquístico Autosómico Dominante/metabolismo , Factores de Transcripción TCF/genética , beta Catenina/metabolismo , Factores de Edad , Animales , Túbulos Renales/metabolismo , Ratones , Ratones Mutantes , Modelos Biológicos , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Factores de Transcripción TCF/metabolismo , Canales Catiónicos TRPP/genética , Transcripción Genética , Proteínas Wnt/metabolismo
15.
J Am Soc Nephrol ; 21(3): 489-97, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20075061

RESUMEN

Aberrant activation of the mammalian target of rapamycin (mTOR) pathway occurs in polycystic kidney disease (PKD). mTOR inhibitors, such as rapamycin, are highly effective in several rodent models of PKD, but these models result from mutations in genes other than Pkd1 and Pkd2, which are the primary genes responsible for human autosomal dominant PKD. To address this limitation, we tested the efficacy of rapamycin in a mouse model that results from conditional inactivation of Pkd1. Mosaic deletion of Pkd1 resulted in PKD and replicated characteristic features of human PKD including aberrant mTOR activation, epithelial proliferation and apoptosis, and progressive fibrosis. Treatment with rapamycin was highly effective: It reduced cyst growth, preserved renal function, inhibited epithelial cell proliferation, increased apoptosis of cyst-lining cells, and inhibited fibrosis. These data provide in vivo evidence that rapamycin is effective in a human-orthologous mouse model of PKD.


Asunto(s)
Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/fisiopatología , Sirolimus/farmacología , Canales Catiónicos TRPP/genética , Animales , Apoptosis/fisiología , Nitrógeno de la Urea Sanguínea , División Celular/fisiología , Modelos Animales de Enfermedad , Fibrosis , Expresión Génica/efectos de los fármacos , Humanos , Inmunosupresores/farmacología , Proteínas de Filamentos Intermediarios/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Túbulos Renales Colectores/patología , Túbulos Renales Colectores/fisiopatología , Túbulos Renales Distales/patología , Túbulos Renales Distales/fisiopatología , Ratones , Mosaicismo , Proteínas del Tejido Nervioso/genética , Nestina , Fenotipo , Enfermedades Renales Poliquísticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR , Canales Catiónicos TRPP/metabolismo
16.
Kidney360 ; 2(10): 1576-1591, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35372986

RESUMEN

Background: Multiple studies of tissue and cell samples from patients and preclinical models of autosomal dominant polycystic kidney disease report abnormal mitochondrial function and morphology and suggest metabolic reprogramming is an intrinsic feature of this disease. Peroxisomes interact with mitochondria physically and functionally, and congenital peroxisome biogenesis disorders can cause various phenotypes, including mitochondrial defects, metabolic abnormalities, and renal cysts. We hypothesized that a peroxisomal defect might contribute to the metabolic and mitochondrial impairments observed in autosomal dominant polycystic kidney disease. Methods: Using control and Pkd1-/- kidney epithelial cells, we investigated peroxisome abundance, biogenesis, and morphology by immunoblotting, immunofluorescence, and live cell imaging of peroxisome-related proteins and assayed peroxisomal specific ß-oxidation. We further analyzed fatty acid composition by mass spectrometry in kidneys of Pkd1fl/fl;Ksp-Cre mice. We also evaluated peroxisome lipid metabolism in published metabolomics datasets of Pkd1 mutant cells and kidneys. Lastly, we investigated if the C terminus or full-length polycystin-1 colocalize with peroxisome markers by imaging studies. Results: Peroxisome abundance, morphology, and peroxisome-related protein expression in Pkd1-/- cells were normal, suggesting preserved peroxisome biogenesis. Peroxisomal ß-oxidation was not impaired in Pkd1-/- cells, and there was no obvious accumulation of very-long-chain fatty acids in kidneys of mutant mice. Reanalysis of published datasets provide little evidence of peroxisomal abnormalities in independent sets of Pkd1 mutant cells and cystic kidneys, and provide further evidence of mitochondrial fatty acid oxidation defects. Imaging studies with either full-length polycystin-1 or its C terminus, a fragment previously shown to go to the mitochondria, showed minimal colocalization with peroxisome markers restricted to putative mitochondrion-peroxisome contact sites. Conclusions: Our studies showed that loss of Pkd1 does not disrupt peroxisome biogenesis nor peroxisome-dependent fatty acid metabolism.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Proteína Quinasa C/metabolismo , Animales , Humanos , Metabolismo de los Lípidos/genética , Ratones , Mutación , Peroxisomas/metabolismo , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/genética
17.
Proc Natl Acad Sci U S A ; 104(47): 18688-93, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-18003909

RESUMEN

Polycystin-1 (PC1) has an essential function in renal tubular morphogenesis and disruption of its function causes cystogenesis in human autosomal dominant polycystic kidney disease. We have previously shown that recombinant human PC1 is cis-autoproteolytically cleaved at the G protein-coupled receptor proteolytic site domain. To investigate the role of cleavage in vivo, we generated by gene targeting a Pkd1 knockin mouse (Pkd1(V/V)) that expresses noncleavable PC1. The Pkd1(V/V) mice show a hypomorphic phenotype, characterized by a delayed onset and distal nephron segment involvement of cystogenesis at postnatal maturation stage. We show that PC1 is ubiquitously and incompletely cleaved in wild-type mice, so that uncleaved and cleaved PC1 molecules coexist. Our study establishes a critical but restricted role of cleavage for PC1 function and suggests a differential function of the two types of PC1 molecules in vivo.


Asunto(s)
Túbulos Renales/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales Catiónicos TRPP/metabolismo , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genotipo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética
18.
Mol Biol Cell ; 18(10): 4050-61, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17671167

RESUMEN

Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1-/- mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and beta-catenin upon wounding of a monolayer and a transient epithelial-to-mesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated beta-catenin through activation of GSK3beta. Expression of a nondegradable form of beta-catenin in PC-1 MDCK cells restores strong cell-cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis.


Asunto(s)
Movimiento Celular , Citoesqueleto/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Canales Catiónicos TRPP/metabolismo , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Perros , Activación Enzimática/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Fenotipo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , beta Catenina/metabolismo
19.
J Am Soc Nephrol ; 20(11): 2389-402, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19833899

RESUMEN

Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploinsufficient mice, a process that apparently depends on a relative deficiency of p21 activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.


Asunto(s)
Enfermedades Renales Quísticas/etiología , Enfermedades Renales/etiología , Mutación , Daño por Reperfusión/complicaciones , Canales Catiónicos TRPP/genética , Animales , Masculino , Ratones , Ratones Mutantes
20.
Cell Signal ; 74: 109701, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32649993

RESUMEN

Systems-based, agnostic approaches focusing on transcriptomics data have been employed to understand the pathogenesis of polycystic kidney diseases (PKD). While multiple signaling pathways, including Wnt, mTOR and G-protein-coupled receptors, have been implicated in late stages of disease, there were few insights into the transcriptional cascade immediately downstream of Pkd1 inactivation. One of the consistent findings has been transcriptional evidence of dysregulated metabolic and cytoskeleton remodeling pathways. Recent technical developments, including bulk and single-cell RNA sequencing technologies and spatial transcriptomics, offer new angles to investigate PKD. In this article, we review what has been learned based on transcriptional approaches and consider future opportunities.


Asunto(s)
Enfermedades Renales Poliquísticas/metabolismo , Transcriptoma , Animales , Perfilación de la Expresión Génica , Humanos , Canales Catiónicos TRPP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA