RESUMEN
Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure.
Asunto(s)
Histonas/metabolismo , Histonas/efectos de la radiación , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/genética , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Células Cultivadas , Epigénesis Genética/efectos de la radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Histonas/química , Humanos , Metilación/efectos de la radiación , Regiones Promotoras Genéticas/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/efectos de la radiaciónRESUMEN
Small-cell lung cancer (SCLC) is a recalcitrant malignancy that urgently needs new therapies. Four master transcription factors (ASCL1, NEUROD1, POU2F3, and YAP1) have been identified in SCLC, and each defines the transcriptome landscape of one molecular subtype. However, these master transcription factors have not been found directly druggable. We hypothesized that blocking their transcriptional coactivator(s) could provide an alternative approach to target these master transcription factors. Here, we identify that BET proteins physically interact with NEUROD1 and function as transcriptional coactivators. Using CRISPR knockout and ChIP-seq, we demonstrate that NEUROD1 plays a critical role in defining the landscapes of BET proteins in the SCLC genome. Blocking BET proteins by inhibitors led to broad suppression of the NEUROD1-target genes, especially those associated with superenhancers, resulting in the inhibition of SCLC growth in vitro and in vivo. LSAMP, a membrane protein in the IgLON family, was identified as one of the NEUROD1-target genes mediating BET inhibitor sensitivity in SCLC. Altogether, our study reveals that BET proteins are essential in regulating NEUROD1 transactivation and are promising targets in SCLC-N subtype tumors. IMPLICATIONS: Our findings suggest that targeting transcriptional coactivators could be a novel approach to blocking the master transcription factors in SCLC for therapeutic purposes.
Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Activación Transcripcional , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismoRESUMEN
Small cell lung cancer (SCLC) is a recalcitrant malignancy with limited treatment options. Bromodomain and extraterminal domain inhibitors (BETis) have shown promising preclinical activity in SCLC, but the broad sensitivity spectrum limits their clinical prospects. Here, we performed unbiased high-throughput drug combination screens to identify therapeutics that could augment the antitumor activities of BETis in SCLC. We found that multiple drugs targeting the PI-3K-AKT-mTOR pathway synergize with BETis, among which mTOR inhibitors (mTORis) show the highest synergy. Using various molecular subtypes of the xenograft models derived from patients with SCLC, we confirmed that mTOR inhibition potentiates the antitumor activities of BETis in vivo without substantially increasing toxicity. Furthermore, BETis induce apoptosis in both in vitro and in vivo SCLC models, and this antitumor effect is further amplified by combining mTOR inhibition. Mechanistically, BETis induce apoptosis in SCLC by activating the intrinsic apoptotic pathway. However, BET inhibition leads to RSK3 upregulation, which promotes survival by activating the TSC2-mTOR-p70S6K1-BAD cascade. mTORis block this protective signaling and augment the apoptosis induced by BET inhibition. Our findings reveal a critical role of RSK3 induction in tumor survival upon BET inhibition and warrant further evaluation of the combination of mTORis and BETis in patients with SCLC.
Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Inhibidores mTOR , Carcinoma Pulmonar de Células Pequeñas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/fisiología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Serina-Treonina Quinasas TORRESUMEN
Ultraviolet radiation (UVR) from sunlight is the major effector for skin aging and carcinogenesis. However, genes and pathways altered by solar-simulated UVR (ssUVR), a mixture of UVA and UVB, are not well characterized. Here we report global changes in gene expression as well as associated pathways and upstream transcription factors in human keratinocytes exposed to ssUVR. Human HaCaT keratinocytes were exposed to either a single dose or 5 repetitive doses of ssUVR. Comprehensive analyses of gene expression profiles as well as functional annotation were performed at 24 hours post irradiation. Our results revealed that ssUVR modulated genes with diverse cellular functions changed in a dose-dependent manner. Gene expression in cells exposed to a single dose of ssUVR differed significantly from those that underwent repetitive exposures. While single ssUVR caused a significant inhibition in genes involved in cell cycle progression, especially G2/M checkpoint and mitotic regulation, repetitive ssUVR led to extensive changes in genes related to cell signaling and metabolism. We have also identified a panel of ssUVR target genes that exhibited persistent changes in gene expression even at 1 week after irradiation. These results revealed a complex network of transcriptional regulators and pathways that orchestrate the cellular response to ssUVR.
Asunto(s)
Factores de Transcripción/metabolismo , Rayos Ultravioleta , Línea Celular , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Puntos de Control de la Fase M del Ciclo Celular/efectos de la radiación , Transducción de Señal/efectos de la radiaciónRESUMEN
Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.