Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Biochemistry ; 60(43): 3253-3261, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34658241

RESUMEN

Photolyases (PHRs) repair ultraviolet (UV)-induced DNA photoproducts into normal bases. In this study, we measured the conformational changes upon photoactivation and photorepair processes of a PHR and its specific substrates, (6-4)PHR and a pyrimidine(6-4)pyrimidone photoproduct ((6-4)PP), by light-induced difference Fourier transform infrared (FT-IR) spectroscopy. The single-stranded DNA with (6-4)PP (ss(6-4)PP) was used as a substrate and the resultant FT-IR spectra were compared with the previous results on double-stranded DNA with (6-4)PP (ds(6-4)PP). In the excess amount of substrate to the enzyme, different ss(6-4)PP photorepair FT-IR signals were obtained in an illumination time-dependent manner. As reported for ds(6-4)PP, the early stages of the photoreaction involve the changes in the ss(6-4)PP only, while the late stages of the reaction involve the ss(6-4)PP repair-associated changes and dissociation from (6-4)PHR. From these spectra, difference spectra originating from the binding/dissociation spectrum were extracted. The signals of the C═O stretches of (6-4)PP and repaired thymines in the single- and double-stranded DNA were tentatively assigned. The C═O stretches of (6-4)PP were observed at frequencies that reflect single- and double-stranded DNA environments in aqueous solution, reflecting the different hydrogen-bonding environments. The conformational changes of PHR upon binding of ss(6-4)PP and ds(6-4)PP were similar, suggesting that the conformational change is limited to the (6-4)PP binding pocket region. We interpreted that ds(6-4)PP may be bound together without any special mechanism for flipping out.


Asunto(s)
Reparación del ADN/fisiología , Desoxirribodipirimidina Fotoliasa/metabolismo , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Pirimidinas , Pirimidinonas , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Rayos Ultravioleta/efectos adversos , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
2.
Photochem Photobiol Sci ; 19(10): 1326-1331, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32935701

RESUMEN

Cryptochromes (CRYs) are blue-light receptors involved in photomorphogenesis in plants. Flavin adenine dinucleotide (FAD) is one of the chromophores of cryptochromes; its resting state oxidized form is converted into a signalling state neutral semiquionod radical (FADH˙) form. Studies have shown that cryptochrome 1 from Arabidopsis thaliana (AtCRY1) can bind ATP at its photolyase homology region (PHR), resulting in accumulation of FADH˙ form. This study used light-induced difference Fourier transform infrared spectroscopy to investigate how ATP influences structural changes in AtCRY1-PHR during the photoreaction. In the presence of ATP, there were large changes in the signals from the protein backbone compared with in the absence of ATP. The deprotonation of a carboxylic acid was observed only in the presence of ATP; this was assigned as aspartic acid (Asp) 396 through measurement of Asp to glutamic acid mutants. This corresponds to the protonation state of Asp396 estimated from the reported pKa values of Asp396; that is, the side chain of Asp396 is deprotonated and protonated for the ATP-free and -bound forms, respectively, in our experimental condition at pH8. Therefore, Asp396 acts a proton donor to FAD when it is ptotonated. It was indicated that the protonation/deprotination process of Asp396 is correlated with the accunumulation of FADH˙ and protein conformational changes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Ácido Aspártico/metabolismo , Criptocromos/metabolismo , Luz , Adenosina Trifosfato/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Ácido Aspártico/química , Criptocromos/química , Concentración de Iones de Hidrógeno , Modelos Moleculares
3.
Genes Dev ; 24(16): 1695-708, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20713515

RESUMEN

The plant hormone abscisic acid (ABA) regulates many key processes in plants, including seed germination and development and abiotic stress tolerance, particularly drought resistance. Understanding early events in ABA signal transduction has been a major goal of plant research. The recent identification of the PYRABACTIN (4-bromo-N-[pyridin-2-yl methyl]naphthalene-1-sulfonamide) RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family of ABA receptors and their biochemical mode of action represents a major breakthrough in the field. The solving of PYR/RCAR structures provides a context for resolving mechanisms mediating ABA control of protein-protein interactions for downstream signaling. Recent studies show that a pathway based on PYR/RCAR ABA receptors, PROTEIN PHOSPHATASE 2Cs (PP2Cs), and SNF1-RELATED PROTEIN KINASE 2s (SnRK2s) forms the primary basis of an early ABA signaling module. This pathway interfaces with ion channels, transcription factors, and other targets, thus providing a mechanistic connection between the phytohormone and ABA-induced responses. This emerging PYR/RCAR-PP2C-SnRK2 model of ABA signal transduction is reviewed here, and provides an opportunity for testing novel hypotheses concerning ABA signaling. We address newly emerging questions, including the potential roles of different PYR/RCAR isoforms, and the significance of ABA-induced versus constitutive PYR/RCAR-PP2C interactions. We also consider how the PYR/RCAR-PP2C-SnRK2 pathway interfaces with ABA-dependent gene expression, ion channel regulation, and control of small molecule signaling. These exciting developments provide researchers with a framework through which early ABA signaling can be understood, and allow novel questions about the hormone response pathway and possible applications in stress resistance engineering of plants to be addressed.


Asunto(s)
Ácido Abscísico/metabolismo , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Arabidopsis/enzimología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/metabolismo , Plantas/enzimología , Unión Proteica , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Transcripcional
4.
Proc Natl Acad Sci U S A ; 111(43): E4568-76, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25316790

RESUMEN

Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu(2+) binding site and defined cross-dimer copper-copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Mutación/genética , Agregación Patológica de Proteínas/enzimología , Agregación Patológica de Proteínas/genética , Superóxido Dismutasa/genética , Ácidos/metabolismo , Esclerosis Amiotrófica Lateral/genética , Cobre/farmacología , Cristalografía por Rayos X , Ácido Edético/farmacología , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenotipo , Sustancias Protectoras/farmacología , Dispersión del Ángulo Pequeño , Soluciones , Superóxido Dismutasa/química , Superóxido Dismutasa-1
5.
Biochemistry ; 55(4): 715-23, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26719910

RESUMEN

Photolyases (PHRs) repair the UV-induced photoproducts, cyclobutane pyrimidine dimer (CPD) or pyrimidine-pyrimidone (6-4) photoproduct [(6-4) PP], restoring normal bases to maintain genetic integrity. CPD and (6-4) PP are repaired by substrate-specific PHRs, CPD PHR and (6-4) PHR, respectively. Flavin adenine dinucleotide (FAD) is the chromophore of both PHRs, and the resting oxidized form (FAD(ox)), at least under in vitro purified conditions, is first photoconverted to the neutral semiquinoid radical (FADH(•)) form, followed by photoconversion into the enzymatically active fully reduced (FADH(-)) form. Previously, we reported light-induced difference Fourier transform infrared (FTIR) spectra corresponding to the photoactivation process of Xenopus (6-4) PHR. Spectral differences between the absence and presence of (6-4) PP were observed in the photoactivation process. To identify the FTIR signals where these differences appeared, we compared the FTIR spectra of photoactivation (i) in the presence and absence of (6-4) PP, (ii) of (13)C labeling, (15)N labeling, and [(14)N]His/(15)N labeling, and (iii) of H354A and H358A mutants. We successfully assigned the vibrational bands for (6-4) PP, the α-helix and neutral His residue(s). In particular, we assigned three bands to the C ═ O groups of (6-4) PP in the three different redox states of FAD. Furthermore, the changed hydrogen bonding environments of C ═ O groups of (6-4) PP suggested restructuring of the binding pocket of the DNA lesion in the process of photoactivation.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/química , Flavina-Adenina Dinucleótido/química , Dímeros de Pirimidina/química , Proteínas de Xenopus/química , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Mutación Missense , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/inmunología , Xenopus laevis
6.
Biochemistry ; 55(30): 4173-83, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27431478

RESUMEN

Ultraviolet (UV) light from the sun damages DNA by forming a cyclobutane pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone photoproducts [(6-4) PP]. Photolyase (PHR) enzymes utilize near-UV/blue light for DNA repair, which is initiated by light-induced electron transfer from the fully reduced flavin adenine dinucleotide chromophore. Despite similar structures and repair mechanisms, the functions of PHR are highly selective; CPD PHR repairs CPD, but not (6-4) PP, and vice versa. In this study, we attempted functional conversion between CPD and (6-4) PHRs. We found that a triple mutant of (6-4) PHR is able to repair the CPD photoproduct, though the repair efficiency is 1 order of magnitude lower than that of wild-type CPD PHR. Difference Fourier transform infrared spectra for repair demonstrate the lack of secondary structural alteration in the mutant, suggesting that the triple mutant gains substrate binding ability while it does not gain the optimized conformational changes from light-induced electron transfer to the release of the repaired DNA. Interestingly, the (6-4) photoproduct is not repaired by the reverse mutation of CPD PHR, and eight additional mutations (total of 11 mutations) introduced into CPD PHR are not sufficient. The observed asymmetric functional conversion is interpreted in terms of a more complex repair mechanism for (6-4) repair, which was supported by quantum chemical/molecular mechanical calculation. These results suggest that CPD PHR may represent an evolutionary origin for photolyase family proteins.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Dímeros de Pirimidina/metabolismo , Sustitución de Aminoácidos , Animales , Dominio Catalítico/genética , Cristalografía por Rayos X , Daño del ADN , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/química , Transporte de Electrón , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dímeros de Pirimidina/química , Dímeros de Pirimidina/efectos de la radiación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Ultravioleta , Xenopus laevis
7.
J Am Chem Soc ; 138(13): 4368-76, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27002596

RESUMEN

The spread of the absorbance of the stable FADH(•) radical (300-700 nm) allows CPD photolyase to highly efficiently form FADH(-), making it functional for DNA repair. In this study, FTIR spectroscopy detected a strong hydrogen bond, from FAD N5-H to the carbonyl group of the Asn378 side chain, that is modulated by the redox state of FAD. The observed characteristic frequency shifts were reproduced in quantum-mechanical models of the flavin binding site, which were then employed to elucidate redox tuning governed by Asn378. We demonstrate that enhanced hydrogen bonding of the Asn378 side chain with the FADH(•) radical increases thermodynamic stabilization of the radical state, and further ensures kinetic stabilization and accumulation of the fully reduced FADH(-) state.


Asunto(s)
Asparagina/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , Asparagina/química , Sitios de Unión , Bisfenol A Glicidil Metacrilato , Reparación del ADN , Escherichia coli/enzimología , Flavina-Adenina Dinucleótido/química , Hidrógeno , Enlace de Hidrógeno , Cinética , Modelos Químicos , Conformación Molecular , Estructura Molecular , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier
8.
J Bacteriol ; 197(24): 3834-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26459556

RESUMEN

UNLABELLED: Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences. Superoxide dismutases are master regulators of reactive oxygen and general pathogenicity factors and are therefore therapeutic targets. Cu,Zn superoxide dismutases (SODs) localized to the periplasm promote survival by detoxifying superoxide radicals generated by major host antimicrobial immune responses. We discovered that passive immunization with an antibody directed at N. meningitidis SOD (NmSOD) was protective in a mouse infection model. To define the relevant atomic details and solution assembly states of this important virulence factor, we report high-resolution and X-ray scattering analyses of NmSOD and of SOD from B. abortus (BaSOD). The NmSOD structures revealed an auxiliary tetrahedral Cu-binding site bridging the dimer interface; mutational analyses suggested that this metal site contributes to protein stability, with implications for bacterial defense mechanisms. Biochemical and structural analyses informed us about electrostatic substrate guidance, dimer assembly, and an exposed C-terminal epitope in the NmSOD dimer. In contrast, the monomeric BaSOD structure provided insights for extending immunogenic peptide epitopes derived from the protein. These collective results reveal unique contributions of SOD to pathogenic virulence, refine predictive motifs for distinguishing SOD classes, and suggest general targets for antibacterial immune responses. The identified functional contributions, motifs, and targets distinguishing bacterial and eukaryotic SOD assemblies presented here provide a foundation for efforts to develop SOD-specific inhibitors of or vaccines against these harmful pathogens. IMPORTANCE: By protecting microbes against reactive oxygen insults, SODs aid survival of many bacteria within their hosts. Despite the ubiquity and conservation of these key enzymes, notable species-specific differences relevant to pathogenesis remain undefined. To probe mechanisms that govern the functioning of Neisseria meningitidis and Brucella abortus SODs, we used X-ray structures, enzymology, modeling, and murine infection experiments. We identified virulence determinants common to the two homologs, assembly differences, and a unique metal reservoir within meningococcal SOD that stabilizes the enzyme and may provide a safeguard against copper toxicity. The insights reported here provide a rationale and a basis for SOD-specific drug design and an extension of immunogen design to target two important pathogens that continue to pose global health threats.


Asunto(s)
Complejo Antígeno-Anticuerpo/ultraestructura , Brucella abortus/inmunología , Neisseria meningitidis/inmunología , Superóxido Dismutasa/inmunología , Superóxido Dismutasa/ultraestructura , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Sitios de Unión de Anticuerpos , Vacuna contra la Brucelosis/inmunología , Brucella abortus/patogenicidad , Brucelosis/inmunología , Brucelosis/prevención & control , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inmunización Pasiva/métodos , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Ratones , Neisseria meningitidis/patogenicidad , Superóxido Dismutasa/genética , Factores de Virulencia/inmunología
9.
Photochem Photobiol Sci ; 14(5): 995-1004, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25811405

RESUMEN

UVR8 is a recently discovered ultraviolet-B (UV-B) photoreceptor protein identified in plants and algae. In the dark state, UVR8 exists as a homodimer, whereas UV-B irradiation induces UVR8 monomerization and initiation of signaling. Although the biological functions of UVR8 have been studied, the fundamental reaction mechanism and associated kinetics have not yet been fully elucidated. Here, we used the transient grating method to determine the reaction dynamics of UVR8 monomerization based on its diffusion coefficient. We found that the UVR8 photodissociation reaction proceeds in three stages: (i) photoexcitation of cross-dimer tryptophan (Trp) pyramids; (ii) an initial conformational change with a time constant of 50 ms; and (iii) dimer dissociation with a time constant of 200 ms. We identified W285 as the key Trp residue responsible for initiating this photoreaction. Although the C-terminus of UVR8 is essential for biological interactions and signaling via downstream components such as COP1, no obvious differences were detected between the photoreactions of wild-type UVR8 (amino acids 1-440) and a mutant lacking the C-terminus (amino acids 1-383). This similarity indicates that the conformational change associated with stage ii cannot primarily be attributed to this region. A UV-B-driven conformational change with a time constant of 50 ms was also detected in the monomeric mutants of UVR8. Dimer recovery following monomerization, as measured by circular dichroism spectroscopy, was decreased under oxygen-purged conditions, suggesting that redox reactivity is a key factor contributing to the UVR8 oligomeric state.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/efectos de la radiación , Procesos Fotoquímicos , Rayos Ultravioleta , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Dicroismo Circular , Dimerización , Cinética , Modelos Moleculares , Mutación , Conformación Proteica , Factores de Tiempo , Triptófano/química
10.
Biophys J ; 107(7): 1669-74, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296320

RESUMEN

We demonstrate the ability of pulsed dipolar electron spin resonance (ESR) spectroscopy (PDS) to report on the conformation of Cu-Zn superoxide dismutase (SOD1) through the sensitive measurement of dipolar interactions between inherent Cu(2+) ions. Although the extent and the anisotropy of the Cu ESR spectrum provides challenges for PDS, Ku-band (17.3 GHz) double electron-electron resonance and double-quantum coherence variants of PDS coupled with distance reconstruction methods recover Cu-Cu distances in good agreement with crystal structures. Moreover, Cu-PDS measurements expose distinct differences between the conformational properties of wild-type SOD1 and a single-residue variant (I149T) that leads to the disease amyotrophic lateral sclerosis (ALS). The I149T protein displays a broader Cu-Cu distance distribution within the SOD1 dimer compared to wild-type. In a nitroxide (NO)-labeled sample, distance distributions obtained from Cu-Cu, Cu-NO, and NO-NO separations reveal increased structural heterogeneity within the protein and a tendency for mutant dimers to associate. In contrast, perturbations caused by the ALS mutation are completely masked in the crystal structure of I149T. Thus, PDS readily detects alterations in metalloenzyme solution properties not easily deciphered by other methods and in doing so supports the notion that increased range of motion and associations of SOD1 ALS variants contribute to disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Cobre/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Mutación , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Cristalografía por Rayos X , Progresión de la Enfermedad , Humanos , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Superóxido Dismutasa/genética
11.
Biochemistry ; 53(37): 5864-75, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25152314

RESUMEN

Observations of light-receptive enzyme complexes are usually complicated by simultaneous overlapping signals from the chromophore, apoprotein, and substrate, so that only the initial, ultrafast, photon-chromophore reaction and the final, slow, protein conformational change provide separate, nonoverlapping signals. Each provides its own advantages, whereas sometimes the overlapping signals from the intervening time scales still cannot be fully deconvoluted. We overcome the problem by using a novel method to selectively isotope-label the apoprotein but not the flavin adenine dinucleotide (FAD) cofactor. This allowed the Fourier transform infrared (FTIR) signals to be separated from the apoprotein, FAD cofactor, and DNA substrate. Consequently, a comprehensive structure-function study by FTIR spectroscopy of the Escherichia coli cyclobutane pyrimidine dimer photolyase (CPD-PHR) DNA repair enzyme was possible. FTIR signals could be identified and assigned upon FAD photoactivation and DNA repair, which revealed protein dynamics for both processes beyond simple one-electron reduction and ejection, respectively. The FTIR data suggest that the synergistic cofactor-protein partnership in CPD-PHR linked to changes in the shape of FAD upon one-electron reduction may be coordinated with conformational changes in the apoprotein, allowing it to fit the DNA substrate. Activation of the CPD-PHR chromophore primes the apoprotein for subsequent DNA repair, suggesting that CPD-PHR is not simply an electron-ejecting structure. When FAD is activated, changes in its structure may trigger coordinated conformational changes in the apoprotein and thymine carbonyl of the substrate, highlighting the role of Glu275. In contrast, during DNA repair and release processes, primary conformational changes occur in the enzyme and DNA substrate, with little contribution from the FAD cofactor and surrounding amino acid residues.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/química , Flavina-Adenina Dinucleótido/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sitios de Unión , Isótopos de Carbono , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Marcaje Isotópico , Luz , Estructura Secundaria de Proteína , Dímeros de Pirimidina/química , Relación Estructura-Actividad
12.
J Biol Chem ; 288(13): 9249-60, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23430261

RESUMEN

Electron transfer reactions play vital roles in many biological processes. Very often the transfer of charge(s) proceeds stepwise over large distances involving several amino acid residues. By using time-resolved electron paramagnetic resonance and optical spectroscopy, we have studied the mechanism of light-induced reduction of the FAD cofactor of cryptochrome/photolyase family proteins. In this study, we demonstrate that electron abstraction from a nearby amino acid by the excited FAD triggers further electron transfer steps even if the conserved chain of three tryptophans, known to be an effective electron transfer pathway in these proteins, is blocked. Furthermore, we were able to characterize this secondary electron transfer pathway and identify the amino acid partner of the resulting flavin-amino acid radical pair as a tyrosine located at the protein surface. This alternative electron transfer pathway could explain why interrupting the conserved tryptophan triad does not necessarily alter photoreactions of cryptochromes in vivo. Taken together, our results demonstrate that light-induced electron transfer is a robust property of cryptochromes and more intricate than commonly anticipated.


Asunto(s)
Criptocromos/química , Transporte de Electrón/genética , Triptófano/química , Tirosina/química , Anfibios , Animales , Desoxirribodipirimidina Fotoliasa/química , Espectroscopía de Resonancia por Spin del Electrón , Flavina-Adenina Dinucleótido/química , Cinética , Luz , Modelos Moleculares , Conformación Molecular , Óptica y Fotónica/métodos , Fotoquímica/métodos , Espectrofotometría Ultravioleta/métodos
13.
Biochemistry ; 52(6): 1019-27, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23331252

RESUMEN

Photolyases (PHRs) utilize near-ultraviolet (UV)-blue light to specifically repair the major photoproducts (PPs) of UV-induced damaged DNA. The cyclobutane pyrimidine dimer PHR (CPD-PHR) from Escherichia coli binds flavin adenine dinucleotide (FAD) as a cofactor and 5,10-methenyltetrahydrofolate as a light-harvesting pigment and specifically repairs CPD lesions. By comparison, a second photolyase known as (6-4) PHR, present in a range of higher organisms, uniquely repairs (6-4) PPs. To understand the repair mechanism and the substrate specificity that distinguish CPD-PHR from (6-4) PHR, we applied Fourier transform infrared (FTIR) spectroscopy to bacterial CPD-PHR in the presence or absence of a well-defined DNA substrate, as we have studied previously for vertebrate (6-4) PHR. PHRs show light-induced reduction of FAD, and photorepair by CPD-PHR involves the transfer of an electron from the photoexcited reduced FAD to the damaged DNA for cleaving the dimers to maintain the DNA's integrity. Here, we measured and analyzed difference FTIR spectra for the photoactivation and DNA photorepair processes of CPD-PHR. We identified light-dependent signals only in the presence of substrate. The signals, presumably arising from a protonated carboxylic acid or the DNA substrate, implicate conformational rearrangements of the protein and substrate during the repair process. Deuterium exchange FTIR measurements of CPD-PHR highlight potential differences in the photoactivation and photorepair mechanisms in comparison to those of (6-4) PHR. Although CPD-PHR and (6-4) PHR appear to exhibit similar overall structures, our studies indicate that distinct conformational rearrangements, especially in the α-helices, are initiated within these enzymes upon binding of their respective DNA substrates.


Asunto(s)
Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , ADN/química , Desoxirribodipirimidina Fotoliasa/química , Dímeros de Pirimidina/química , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Ultravioleta , ADN/genética , ADN/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Escherichia coli/enzimología , Flavina-Adenina Dinucleótido/metabolismo , Unión Proteica , Conformación Proteica , Dímeros de Pirimidina/metabolismo , Especificidad por Sustrato
14.
J Biol Chem ; 287(26): 22295-304, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22573334

RESUMEN

Fluorescent proteins derived from light, oxygen, or voltage (LOV) domains offer advantages over green fluorescent protein (GFP) from their small size and efficacy under anaerobic conditions. The flavoprotein improved LOV (iLOV) was engineered from the blue light receptor phototropin as a reporter of viral infection. To inform the molecular basis for the improved, photoreversible, fluorescent properties of iLOV, we employed directed evolution and determined five LOV crystallographic structures. Comparative structural analyses between iLOV and its progenitors reveal mutation-induced constraints in the environment of the flavin mononucleotide (FMN) chromophore; in iLOV, the methyl group of Thr-394 "crowds" the FMN isoalloxazine ring, Leu-470 triggers side chain "flipping" of Leu-472, and the terminal FMN phosphate shows increased anchoring. We further engineered iLOV variants that are readily detectable in bacterial and mammalian cells due to order-of-magnitude photostability increases. Structure determination of a resulting representative photostable iLOV (phiLOV) variant reveals additional constraints on the chromophore. Aromatic residues Tyr-401 and Phe-485 in phiLOV sandwich the FMN isoalloxazine ring from both sides, whereas Ser-390 anchors the side chain of FMN-interacting Gln-489 Our combined structural and mutational results reveal that constraining the FMN fluorophore yields improved photochemical properties for iLOV and its new photostable derivative. These findings provide a framework for structural fine-tuning of LOV scaffold proteins to maximize their potential as oxygen-independent fluorescent reporters.


Asunto(s)
Flavoproteínas/química , Proteínas Luminiscentes/química , Fotoquímica/métodos , Animales , Arabidopsis/metabolismo , Línea Celular , Cristalografía por Rayos X/métodos , Flavoproteínas/metabolismo , Fluorescencia , Genes Reporteros , Haplorrinos , Luz , Modelos Moleculares , Mutagénesis , Oxígeno/química , Fototropinas/química , Conformación Proteica , Espectrofotometría/métodos
15.
J Biol Chem ; 287(15): 12060-9, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22170053

RESUMEN

Ozone depletion increases terrestrial solar ultraviolet B (UV-B; 280-315 nm) radiation, intensifying the risks plants face from DNA damage, especially covalent cyclobutane pyrimidine dimers (CPD). Without efficient repair, UV-B destroys genetic integrity, but plant breeding creates rice cultivars with more robust photolyase (PHR) DNA repair activity as an environmental adaptation. So improved strains of Oryza sativa (rice), the staple food for Asia, have expanded rice cultivation worldwide. Efficient light-driven PHR enzymes restore normal pyrimidines to UV-damaged DNA by using blue light via flavin adenine dinucleotide to break pyrimidine dimers. Eukaryotes duplicated the photolyase gene, producing PHRs that gained functions and adopted activities that are distinct from those of prokaryotic PHRs yet are incompletely understood. Many multicellular organisms have two types of PHR: (6-4) PHR, which structurally resembles bacterial CPD PHRs but recognizes different substrates, and Class II CPD PHR, which is remarkably dissimilar in sequence from bacterial PHRs despite their common substrate. To understand the enigmatic DNA repair mechanisms of PHRs in eukaryotic cells, we determined the first crystal structure of a eukaryotic Class II CPD PHR from the rice cultivar Sasanishiki. Our 1.7 Å resolution PHR structure reveals structure-activity relationships in Class II PHRs and tuning for enhanced UV tolerance in plants. Structural comparisons with prokaryotic Class I CPD PHRs identified differences in the binding site for UV-damaged DNA substrate. Convergent evolution of both flavin hydrogen bonding and a Trp electron transfer pathway establish these as critical functional features for PHRs. These results provide a paradigm for light-dependent DNA repair in higher organisms.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/química , Oryza/enzimología , Proteínas de Plantas/química , Secuencias de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/genética , Ensayo de Cambio de Movilidad Electroforética , Flavina-Adenina Dinucleótido/química , Enlace de Hidrógeno , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oryza/genética , Fosforilación , Filogenia , Proteínas de Plantas/genética , Polimorfismo Genético , Unión Proteica , Homología Estructural de Proteína , Propiedades de Superficie , Rayos Ultravioleta
16.
Biochemistry ; 51(29): 5774-83, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22747528

RESUMEN

Photolyases (PHRs) are blue light-activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The flavin adenine dinucleotide (FAD) chromophore of PHRs has four different redox states: oxidized (FAD(ox)), anion radical (FAD(•-)), neutral radical (FADH(•)), and fully reduced (FADH(-)). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FAD(ox) is converted to semiquinone via light-induced one-electron and one-proton transfers and then to FADH(-) by light-induced one-electron transfer. We successfully trapped FAD(•-) at 200 K, where electron transfer occurs but proton transfer does not. UV-visible spectroscopy following 450 nm illumination of FAD(ox) at 277 K defined the FADH(•)/FADH(-) mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested by UV-visible and FTIR analysis of FAD(•-) at 200 K. Spectral analysis of amide I vibrations revealed structural perturbation of the protein's ß-sheet during initial electron transfer (FAD(•-) formation), a transient increase in α-helicity during proton transfer (FADH(•) formation), and reversion to the initial amide I signal following subsequent electron transfer (FADH(-) formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH(-) did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of these FTIR observations.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Animales , Desoxirribodipirimidina Fotoliasa/química , Flavina-Adenina Dinucleótido/química , Luz , Oxidación-Reducción , Estructura Secundaria de Proteína , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Proteínas de Xenopus/química
17.
Proc Natl Acad Sci U S A ; 106(17): 6962-7, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19359474

RESUMEN

Homologous flavoproteins from the photolyase (PHR)/cryptochrome (CRY) family use the FAD cofactor in PHRs to catalyze DNA repair and in CRYs to tune the circadian clock and control development. To help address how PHR/CRY members achieve these diverse functions, we determined the crystallographic structure of Arabidopsis thaliana (6-4) PHR (UVR3), which is strikingly (>65%) similar in sequence to human circadian clock CRYs. The structure reveals a substrate-binding cavity specific for the UV-induced DNA lesion, (6-4) photoproduct, and cofactor binding sites different from those of bacterial PHRs and consistent with distinct mechanisms for activities and regulation. Mutational analyses were combined with this prototypic structure for the (6-4) PHR/clock CRY cluster to identify structural and functional motifs: phosphate-binding and Pro-Lys-Leu protrusion motifs constricting access to the substrate-binding cavity above FAD, sulfur loop near the external end of the Trp electron-transfer pathway, and previously undefined C-terminal helix. Our results provide a detailed, unified framework for investigations of (6-4) PHRs and the mammalian CRYs. Conservation of key residues and motifs controlling FAD access and activities suggests that regulation of FAD redox properties and radical stability is essential not only for (6-4) photoproduct DNA repair, but also for circadian clock-regulating CRY functions. The structural and functional results reported here elucidate archetypal relationships within this flavoprotein family and suggest how PHRs and CRYs use local residue and cofactor tuning, rather than larger structural modifications, to achieve their diverse functions encompassing DNA repair, plant growth and development, and circadian clock regulation.


Asunto(s)
Arabidopsis/enzimología , Ritmo Circadiano , Reparación del ADN/genética , ADN de Plantas/metabolismo , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis , Sitios de Unión , Secuencia Conservada , Criptocromos , Cristalografía por Rayos X , ADN de Plantas/genética , Desoxirribodipirimidina Fotoliasa/genética , Flavoproteínas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Fosfatos/química , Fosfatos/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Alineación de Secuencia
18.
Biochemistry ; 50(18): 3591-8, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21462921

RESUMEN

The UV component of sunlight threatens all life on the earth by damaging DNA. The photolyase (PHR) DNA repair proteins maintain genetic integrity by harnessing blue light to restore intact bases from the major UV-induced photoproducts, cyclobutane pyrimidine dimers (CPD), and (6-4) photoproducts ((6-4) PPs). The (6-4) PHR must catalyze not only covalent bond cleavage between two pyrmidine bases but also hydroxyl or amino group transfer from the 5'- to 3'-pyrimidine base, requiring a more complex mechanism than that postulated for CPD PHR. In this paper, we apply Fourier transform infrared (FTIR) spectroscopy to (6-4) PHR and report difference FTIR spectra that correspond to its photoactivation, substrate binding, and light-dependent DNA repair processes. The presence of DNA carrying a single (6-4) PP uniquely influences vibrations of the protein backbone and a protonated carboxylic acid, whereas photoactivation produces IR spectral changes for the FAD cofactor and the surrounding protein. Difference FTIR spectra for the light-dependent DNA damage repair reaction directly show significant DNA structural changes in the (6-4) lesion and the neighboring phosphate group. Time-dependent illumination of samples with different enzyme:substrate stoichiometries successfully distinguished signals characteristic of structural changes in the protein and the DNA resulting from binding and catalysis.


Asunto(s)
Reparación del ADN , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Daño del ADN , Escherichia coli/metabolismo , Luz , Modelos Químicos , Oxígeno/química , Unión Proteica , Conformación Proteica , Dímeros de Pirimidina/química , Pirimidinas/química , Luz Solar , Rayos Ultravioleta , Xenopus
19.
J Biol Chem ; 285(5): 3064-75, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19948738

RESUMEN

Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys(842). Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys(842) is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.


Asunto(s)
Calmodulina/química , Flavinas/química , Lisina/química , Neuronas/enzimología , Óxido Nítrico Sintasa/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Reductasas del Citocromo/química , Humanos , Cinética , Datos de Secuencia Molecular , Mutación , NADPH Oxidasas/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Homología de Secuencia de Aminoácido
20.
J Biol Chem ; 285(41): 31581-9, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20659888

RESUMEN

Inducible nitric-oxide synthase (iNOS) produces biologically stressful levels of nitric oxide (NO) as a potent mediator of cellular cytotoxicity or signaling. Yet, how this nitrosative stress affects iNOS function in vivo is poorly understood. Here we define two specific non-heme iNOS nitrosation sites discovered by combining UV-visible spectroscopy, chemiluminescence, mass spectrometry, and x-ray crystallography. We detected auto-S-nitrosylation during enzymatic turnover by using chemiluminescence. Selective S-nitrosylation of the ZnS(4) site, which bridges the dimer interface, promoted a dimer-destabilizing order-to-disorder transition. The nitrosated iNOS crystal structure revealed an unexpected N-NO modification on the pterin cofactor. Furthermore, the structurally defined N-NO moiety is solvent-exposed and available to transfer NO to a partner. We investigated glutathione (GSH) as a potential transnitrosation partner because the intracellular GSH concentration is high and NOS can form S-nitrosoglutathione. Our computational results predicted a GSH binding site adjacent to the N-NO-pterin. Moreover, we detected GSH binding to iNOS with saturation transfer difference NMR spectroscopy. Collectively, these observations resolve previous paradoxes regarding this uncommon pterin cofactor in NOS and suggest means for regulating iNOS activity via N-NO-pterin and S-NO-Cys modifications. The iNOS self-nitrosation characterized here appears appropriate to help control NO production in response to cellular conditions.


Asunto(s)
Cisteína/química , Glutatión/química , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico/química , Multimerización de Proteína/fisiología , Pterinas/química , Regulación Alostérica/fisiología , Animales , Cristalografía por Rayos X , Cisteína/metabolismo , Glutatión/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Pterinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA