Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214391

RESUMEN

Core-shell gold-silver cuboidal nanoparticles were produced, with either concave or straight facets. Their incubation with a low concentration of chiral l-glutathione (GSH) biomolecules was found to produce near UV plasmonic extinction and induced circular dichroism (CD) peaks. The effect is sensitive to the silver shell thickness. The GSH molecules were found to cause redistribution of silver in the shell, removing silver atoms from edges/corners and re-depositing them at the nanocuboid facets, probably through some redox and complexation processes between the silver and thiol group of the GSH. Other thiolated chiral biomolecules (and drug molecules) did not show this effect. The emerging near UV surface plasmon resonance is a silver slab resonance, which might also possess some multipolar resonance nature. The concave-shaped nanocuboids exhibited stronger induced plasmonic CD relative to the nanocuboids with straight facets.

2.
Langmuir ; 36(8): 2012-2022, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32011144

RESUMEN

The iron selenide (Fe-Se) family of nanoparticles (FexSey-where x/y ranges from 1:2 to 1:1) has been fabricated by a thermal decomposition method. The control over solution chemistry has been developed by intensively investigating the effect of reaction parameters by means of wide-angle X-ray scattering, leading to the rich insights into the phase-evolution mechanism of the Fe-Se system. The phase transformation followed the FeSe2 → Fe3Se4 → Fe7Se8 → FeSe sequence in the temperature range of 110-300 °C. The deep mechanistic insight helped in the identification of optimized conditions needed to crystallize the individual phase of the Fe-Se system as well as control of the morphology, crystalline phase purity, and thermal stability of the obtained Fe-Se nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA