Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 23(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34682093

RESUMEN

Complex biological systems consist of large numbers of interconnected units, characterized by emergent properties such as collective computation. In spite of all the progress in the last decade, we still lack a deep understanding of how these properties arise from the coupling between the structure and dynamics. Here, we introduce the multiscale emergent functional state, which can be represented as a network where links encode the flow exchange between the nodes, calculated using diffusion processes on top of the network. We analyze the emergent functional state to study the distribution of the flow among components of 92 fungal networks, identifying their functional modules at different scales and, more importantly, demonstrating the importance of functional modules for the information content of networks, quantified in terms of network spectral entropy. Our results suggest that the topological complexity of fungal networks guarantees the existence of functional modules at different scales keeping the information entropy, and functional diversity, high.

2.
Phys Rev E ; 107(4-1): 044304, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198772

RESUMEN

The network density matrix formalism allows for describing the dynamics of information on top of complex structures and it has been successfully used to analyze, e.g., a system's robustness, perturbations, coarse-graining multilayer networks, characterization of emergent network states, and performing multiscale analysis. However, this framework is usually limited to diffusion dynamics on undirected networks. Here, to overcome some limitations, we propose an approach to derive density matrices based on dynamical systems and information theory, which allows for encapsulating a much wider range of linear and nonlinear dynamics and richer classes of structure, such as directed and signed ones. We use our framework to study the response to local stochastic perturbations of synthetic and empirical networks, including neural systems consisting of excitatory and inhibitory links and gene-regulatory interactions. Our findings demonstrate that topological complexity does not necessarily lead to functional diversity, i.e., the complex and heterogeneous response to stimuli or perturbations. Instead, functional diversity is a genuine emergent property which cannot be deduced from the knowledge of topological features such as heterogeneity, modularity, the presence of asymmetries, and dynamical properties of a system.

3.
Netw Neurosci ; 5(3): 831-850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746629

RESUMEN

Information exchange in the human brain is crucial for vital tasks and to drive diseases. Neuroimaging techniques allow for the indirect measurement of information flows among brain areas and, consequently, for reconstructing connectomes analyzed through the lens of network science. However, standard analyses usually focus on a small set of network indicators and their joint probability distribution. Here, we propose an information-theoretic approach for the analysis of synthetic brain networks (based on generative models) and empirical brain networks, and to assess connectome's information capacity at different stages of dementia. Remarkably, our framework accounts for the whole network state, overcoming limitations due to limited sets of descriptors, and is used to probe human connectomes at different scales. We find that the spectral entropy of empirical data lies between two generative models, indicating an interpolation between modular and geometry-driven structural features. In fact, we show that the mesoscale is suitable for characterizing the differences between brain networks and their generative models. Finally, from the analysis of connectomes obtained from healthy and unhealthy subjects, we demonstrate that significant differences between healthy individuals and the ones affected by Alzheimer's disease arise at the microscale (max. posterior probability smaller than 1%) and at the mesoscale (max. posterior probability smaller than 10%).

4.
Phys Rev E ; 102(5-1): 052304, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327131

RESUMEN

The constituents of a complex system exchange information to function properly. Their signaling dynamics often leads to the appearance of emergent phenomena, such as phase transitions and collective behaviors. While information exchange has been widely modeled by means of distinct spreading processes-such as continuous-time diffusion, random walks, synchronization and consensus-on top of complex networks, a unified and physically grounded framework to study information dynamics and gain insights about the macroscopic effects of microscopic interactions is still eluding us. In this paper, we present this framework in terms of a statistical field theory of information dynamics, unifying a range of dynamical processes governing the evolution of information on top of static or time-varying structures. We show that information operators form a meaningful statistical ensemble and their superposition defines a density matrix that can be used for the analysis of complex dynamics. As a direct application, we show that the von Neumann entropy of the ensemble can be a measure of the functional diversity of complex systems, defined in terms of the functional differentiation of higher-order interactions among their components. Our results suggest that modularity and hierarchy, two key features of empirical complex systems-from the human brain to social and urban networks-play a key role to guarantee functional diversity and, consequently, are favored.

5.
Netw Syst Med ; 3(1): 130-141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33274348

RESUMEN

Introduction: We introduce in this study CovMulNet19, a comprehensive COVID-19 network containing all available known interactions involving SARS-CoV-2 proteins, interacting-human proteins, diseases and symptoms that are related to these human proteins, and compounds that can potentially target them. Materials and Methods: Extensive network analysis methods, based on a bootstrap approach, allow us to prioritize a list of diseases that display a high similarity to COVID-19 and a list of drugs that could potentially be beneficial to treat patients. As a key feature of CovMulNet19, the inclusion of symptoms allows a deeper characterization of the disease pathology, representing a useful proxy for COVID-19-related molecular processes. Results: We recapitulate many of the known symptoms of the disease and we find the most similar diseases to COVID-19 reflect conditions that are risk factors in patients. In particular, the comparison between CovMulNet19 and randomized networks recovers many of the known associated comorbidities that are important risk factors for COVID-19 patients, through identified similarities with intestinal, hepatic, and neurological diseases as well as with respiratory conditions, in line with reported comorbidities. Conclusion: CovMulNet19 can be suitably used for network medicine analysis, as a valuable tool for exploring drug repurposing while accounting for the intervening multidimensional factors, from molecular interactions to symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA