Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 145(38): 21040-21052, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37721732

RESUMEN

Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)═O intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3• radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.

2.
J Am Chem Soc ; 145(48): 26122-26132, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37984877

RESUMEN

Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.

3.
Nano Lett ; 21(19): 8290-8297, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34553949

RESUMEN

The most common MXene composition Ti3C2Tx (T = F, O) shows outstanding stability as anode for sodium ion batteries (100% of capacity retention after 530 cycles with charge efficiency >99.7%). However, the reversibility of the intercalation/deintercalation process is strongly affected by the synthesis parameters determining, in turn, significant differences in the material structure. This study proposes a new approach to identify the crystal features influencing the performances, using a structural model built with a multitechnique approach that allows exploring the short-range order of the lamella. The model is then used to determine the long-range order by inserting defective elements into the structure. With this strategy it is possible to fit the MXene diffraction patterns, obtain the structural parameters including the stoichiometric composition of the terminations (neutron data), and quantify the structural disorder which can be used to discriminate the phases with the best electrochemical properties.

4.
Phys Chem Chem Phys ; 23(46): 26575-26584, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34812450

RESUMEN

High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O during low-temperature CO oxidation. By combining Cu L2,3-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations and in situ FT-IR spectroscopy, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO + 1/2O2 at 250 °C, CO2 is produced while bidentate carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorption geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft-XAS coupled with the developed data analysis work-flow and supported by FT-IR spectroscopy may be beneficial to characterize often elusive surface properties of systems of catalytic interest.

5.
Langmuir ; 36(39): 11564-11572, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32900201

RESUMEN

An FeNi (oxy)hydroxide cocatalyst overlayer was photoelectrochemically deposited on a thin-film hematite (α-Fe2O3) photoanode, leading to a cathodic shift of ∼100 mV in the photocurrent onset potential. Operando X-ray absorption spectroscopy (XAS) at the Fe and Ni K-edges was used to study the changes in the overlayer with potential in the dark and under illumination conditions. Potential or illumination only had a minor effect on the Fe oxidation state, suggesting that Fe atoms do not accumulate significant amount of charge over the whole potential range. In contrast, the Ni K-edge spectra showed pronounced dependence on potential in the dark and under illumination. The effect of illumination is to shift the onset for the Ni oxidation because of the generated photovoltage and suggests that holes that are photogenerated in hematite are transferred mainly to the Ni atoms in the overlayer. The increase in the oxidation state of Ni proceeds at potentials corresponding to the redox wave of Ni, which occurs immediately prior to the onset of the oxygen evolution reaction (OER). Linear combination fitting analysis of the obtained spectra suggests that the overlayer does not have to be fully oxidized to promote oxygen evolution. Cathodic discharge measurements show that the photogenerated charge is stored almost exclusively in the Ni atoms within the volume of the overlayer.

6.
Langmuir ; 33(9): 2248-2256, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28170272

RESUMEN

We propose a novel method for determining the structural and thermodynamic properties of nanoparticle-protein complexes under physiological conditions. The method consists of collecting a full set of small-angle X-ray and neutron-scattering measurements in solutions with different concentrations of nanoparticles and protein. The nanoparticle-protein dissociation process is described in the framework of the Hill cooperative model, based on which the whole set of X-ray and neutron-scattering data is fitted simultaneously. This method is applied to water solutions of gold nanoparticles in the presence of human serum albumin without any previous manipulation and can be, in principle, extended to all systems. We demonstrate that the protein dissociation constant, the Hill coefficient, and the stoichiometry of the nanoparticle-protein complex are obtained with a high degree of confidence.


Asunto(s)
Nanopartículas/química , Proteínas/química , Termodinámica , Modelos Moleculares , Estructura Molecular , Difracción de Neutrones , Tamaño de la Partícula , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Difracción de Rayos X
7.
Inorg Chem ; 56(12): 6982-6989, 2017 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-28558207

RESUMEN

Energy-dispersive X-ray absorption spectroscopy was applied, aimed at solving the problem of the structure and stability of a copper(II) lactate complex in alkaline solution, used as a precursor for the electrodeposition of Cu2O. The application of multiple scattering calculations to the simulation of the X-ray absorption near-edge structure part of the spectra allowed an accurate resolution of the structure: the copper(II) cation is surrounded by four lactate ions in a distorted tetrahedral environment, with the lactate anions acting as monodentate ligands. This results in an atomic arrangement where copper is surrounded by four oxygen atoms located at quite a short distance (ca. 1.87 Å) and four oxygen atoms located quite far apart (ca. 3.1-3.2 Å). The complex was finally found to be stable in a wide range of applied potentials.

8.
Phys Chem Chem Phys ; 19(8): 5715-5720, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28230223

RESUMEN

Electrochemical devices for energy conversion and storage are central for a sustainable economy. The performance of electrodes is driven by charge transfer across different layer materials and an understanding of the mechanistics is pivotal to gain improved efficiency. Here, we directly observe the transfer of photogenerated charge carriers in a photoanode made of hematite (α-Fe2O3) and a hydrous iridium oxide (IrOx) overlayer, which plays a key role in photoelectrochemical water oxidation. Through the use of operando X-ray absorption spectroscopy (XAS), we probe the change in occupancy of the Ir 5d levels during optical band gap excitation of α-Fe2O3. At potentials where no photocurrent is observed, electrons flow from the α-Fe2O3 photoanode to the IrOx overlayer. In contrast, when the composite electrode produces a sustained photocurrent (i.e., 1.4 V vs. RHE), a significant transfer of holes from the illuminated α-Fe2O3 to the IrOx layer is clearly demonstrated. The analysis of the operando XAS spectra further suggests that oxygen evolution actually occurs both at the α-Fe2O3/electrolyte and α-Fe2O3/IrOx interfaces. These findings represent an important outcome for a better understanding of composite photoelectrodes and their use in photoelectrochemical systems, such as hydrogen generation or CO2 reduction from sunlight.

9.
Angew Chem Int Ed Engl ; 56(23): 6589-6593, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28464431

RESUMEN

Oxygen evolution reaction (OER) is the most critical step in water splitting, still limiting the development of efficient alkaline water electrolyzers. Here we investigate the OER activity of Au-Fe nanoalloys obtained by laser-ablation synthesis in solution. This method allows a high amount of iron (up to 11 at %) to be incorporated into the gold lattice, which is not possible in Au-Fe alloys synthesized by other routes, due to thermodynamic constraints. The Au0.89 Fe0.11 nanoalloys exhibit strongly enhanced OER in comparison to the individual pure metal nanoparticles, lowering the onset of OER and increasing up to 20 times the current density in alkaline aqueous solutions. Such a remarkable electrocatalytic activity is associated to nanoalloying, as demonstrated by comparative examples with physical mixtures of gold and iron nanoparticles. These results open attractive scenarios to the use of kinetically stable nanoalloys for catalysis and energy conversion.

10.
J Synchrotron Radiat ; 23(2): 622-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26917152

RESUMEN

Three-dimensional printed multi-purpose electrochemical devices for X-ray absorption spectroscopy are presented in this paper. The aim of this work is to show how three-dimensional printing can be a strategy for the creation of electrochemical cells for in situ and in operando experiments by means of synchrotron radiation. As a case study, the description of two cells which have been employed in experiments on photoanodes for photoelectrochemical water splitting are presented. The main advantages of these electrochemical devices are associated with their compactness and with the precision of the three-dimensional printing systems which allows details to be obtained that would otherwise be difficult. Thanks to these systems it was possible to combine synchrotron-based methods with complementary techniques in order to study the mechanism of the photoelectrocatalytic process.

12.
J Synchrotron Radiat ; 21(Pt 2): 395-400, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24562561

RESUMEN

The reaction between NiO and (0001)- and (1102)-oriented Al2O3 single crystals has been investigated on model experimental systems by using the ReflEXAFS technique. Depth-sensitive information is obtained by collecting data above and below the critical angle for total reflection. A systematic protocol for data analysis, based on the recently developed CARD code, was implemented, and a detailed description of the reactive systems was obtained. In particular, for (1102)-oriented Al2O3, the reaction with NiO is almost complete after heating for 6 h at 1273 K, and an almost uniform layer of spinel is found below a mixed (NiO + spinel) layer at the very upmost part of the sample. In the case of the (0001)-oriented Al2O3, for the same temperature and heating time, the reaction shows a lower advancement degree and a residual fraction of at least 30% NiO is detected in the ReflEXAFS spectra.

13.
Nat Commun ; 15(1): 834, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280888

RESUMEN

The alloying process plays a pivotal role in the development of advanced multifunctional plasmonic materials within the realm of modern nanotechnology. However, accurate in silico predictions are only available for metal clusters of just a few nanometers, while the support of modelling is required to navigate the broad landscape of components, structures and stoichiometry of plasmonic nanoalloys regardless of their size. Here we report on the accurate calculation and conceptual understanding of the optical properties of metastable alloys of both plasmonic (Au) and magnetic (Co) elements obtained through a tailored laser synthesis procedure. The model is based on the density functional theory calculation of the dielectric function with the Hubbard-corrected local density approximation, the correction for intrinsic size effects and use of classical electrodynamics. This approach is built to manage critical aspects in modelling of real samples, as spin polarization effects due to magnetic elements, short-range order variability, and size heterogeneity. The method provides accurate results also for other magnetic-plasmonic (Au-Fe) and typical plasmonic (Au-Ag) nanoalloys, thus being available for the investigation of several other nanomaterials waiting for assessment and exploitation in fundamental sectors such as quantum optics, magneto-optics, magneto-plasmonics, metamaterials, chiral catalysis and plasmon-enhanced catalysis.

14.
Anal Chem ; 85(15): 7009-13, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23859008

RESUMEN

In this paper, the fixed energy X-ray absorption voltammetry (FEXRAV) is introduced. FEXRAV represents a novel in situ X-ray absorption technique for fast and easy preliminary characterization of electrode materials and consists of recording the absorption coefficient at a fixed energy while varying at will the electrode potential. The energy is chosen close to an X-ray absorption edge, in order to give the maximum contrast between different oxidation states of an element. It follows that any shift from the original oxidation state determines a variation of the absorption coefficient. Although the information given by FEXRAV obviously does not supply the detailed information of X-ray absorption near edge structure (XANES) or extended X-ray absorption fine structure (EXAFS), it allows to quickly map the oxidation states of the element under consideration within the selected potential windows. This leads to the rapid screening of several systems under different experimental conditions (e.g., nature of the electrolyte, potential window) and is preliminary to more deep X-ray absorption spectroscopy (XAS) characterizations, like XANES or EXAFS. In addition, the time-length of the experiment is much shorter than a series of XAS spectra and opens the door to kinetic analysis.

15.
Adv Mater ; 35(52): e2304152, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986204

RESUMEN

Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.

16.
J Phys Chem A ; 116(25): 6497-504, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22280059

RESUMEN

In this work, IrO(2)-based powders are screened by cyclic voltammetry for the determination of the electrochemical active sites and for the qualitative evaluation of the iridium atoms speciation. All results are obtained using a cavity-microelectrode as powder holder, thus exploiting the features of this innovative tool, whose best potentialities have been recently introduced by our group. All the studied materials have been prepared by the sol-gel technique and differ in calcination temperature and method of mixing the metal oxide precursors. The electrochemical results are complemented with the information obtained by X-ray absorption spectroscopy (XAS), that give insights on the local structure of each selected sample, confirming the trends found by cyclic voltammetry and give new and unexpected insights on the powder structural features.

17.
Materials (Basel) ; 15(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35329598

RESUMEN

X-ray Diffraction has been fully exploited as a probe to investigate crystalline materials. However, very little research has been carried out to unveil its potentialities towards amorphous materials. In this work, we demonstrated the capabilities of Grazing Incidence X-ray Diffraction (GIXRD) as a simple and fast tool to obtain quantitative information about the composition of amorphous mixed oxides. In particular, we evidenced that low angle scattering features, associated with local structure parameters, show a significant trend as a function of the oxide composition. This evolution can be quantified by interpolating GIXRD data with a linear combination of basic analytical functions, making it possible to build up GIXRD peak-sample composition calibration curves. As a case study, the present method was demonstrated on Ta2O5-SiO2 amorphous films deposited by RF-magnetron sputtering. GIXRD results were validated by independent measurement of the oxide composition using Rutherford Backscattering Spectrometry (RBS). These materials are attracting interest in different industrial sectors and, in particular, in photovoltaics as anti-reflection coatings. Eventually, the optical properties measured by spectroscopic ellipsometry were correlated to the chemical composition of the film. The obtained results highlighted not only a correlation between diffraction features and the composition of amorphous films but also revealed a simple and fast strategy to characterize amorphous thin oxides of industrial interest.

18.
Inorg Chem ; 50(8): 3757-65, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21434615

RESUMEN

We present here a X-ray absorption spectroscopy (XAS) investigation on the local chemical order and electronic structure of Cs and Ba, promoters of the Ru/C catalysts for ammonia synthesis that attracted interest because of highly increased productivity. The role of the promoters is still largely unclear, although indirect evidence for Cs partial reduction has been obtained by this and other groups. Our XAS analysis with in situ H(2) reduction directly supports the partial Cs reduction in the promoted Ru/C catalysts, depending on the presence of Ru and on the graphitization degree of the support. Higher coordination of Ba was observed with respect to Cs in the reduced samples, without evidence of heavy atoms (Ru, Cs, and Ba) in the surroundings. Because of the strong electropositive nature of Cs, direct experimental evidence of its partial reduction is of outstanding significance also for other applications.

19.
ACS Appl Nano Mater ; 4(2): 1057-1066, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33778418

RESUMEN

Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices.

20.
Phys Chem Chem Phys ; 12(21): 5547-50, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20428573

RESUMEN

A specific preparation procedure makes possible to obtain in one shot structural and compositional characterization of a buried interface at the nanometre scale using a micrometre scale probe. A specific example based on dispersive mu-XAS, micro X-ray absorption spectroscopy, shows that nearly-atomic scale changes in local structure, composition, as well as local disorder are faithfully detected. The approach could in principle be applied to any probe with a micrometric resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA