Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(5): 967-980.e10, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38242130

RESUMEN

Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.


Asunto(s)
Histonas , Óxido Nítrico , Histonas/genética , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Óxido Nítrico/metabolismo , Complejo Mediador/metabolismo , Oxidorreductasas/metabolismo
2.
EMBO J ; 43(7): 1187-1213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383863

RESUMEN

Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.


Asunto(s)
Carbono , Histonas , Animales , Ratones , Histonas/metabolismo , Carbono/metabolismo , Lipogénesis , Cromatina , Acetiltransferasas/metabolismo , Lípidos , Acetilación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
3.
Mol Cell Proteomics ; 23(7): 100799, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866077

RESUMEN

Histone posttranslational modifications (PTMs) have crucial roles in a multitude of cellular processes, and their aberrant levels have been linked with numerous diseases, including cancer. Although histone PTM investigations have focused so far on methylations and acetylations, alternative long-chain acylations emerged as new dimension, as they are linked to cellular metabolic states and affect gene expression through mechanisms distinct from those regulated by acetylation. Mass spectrometry is the most powerful, comprehensive, and unbiased method to study histone PTMs. However, typical mass spectrometry-based protocols for histone PTM analysis do not allow the identification of naturally occurring propionylation and butyrylation. Here, we present improved state-of-the-art sample preparation and analysis protocols to quantitate these classes of modifications. After testing different derivatization methods coupled to protease digestion, we profiled common histone PTMs and histone acylations in seven mouse tissues and human normal and tumor breast clinical samples, obtaining a map of propionylations and butyrylations found in different tissue contexts. A quantitative histone PTM analysis also revealed a contribution of histone acylations in discriminating different tissues, also upon perturbation with antibiotics, and breast cancer samples from the normal counterpart. Our results show that profiling only classical modifications is limiting and highlight the importance of using sample preparation methods that allow the analysis of the widest possible spectrum of histone modifications, paving the way for deeper insights into their functional significance in cellular processes and disease states.

4.
Cancer Discov ; 14(5): 866-889, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527495

RESUMEN

Patients with estrogen receptor-positive breast cancer receive adjuvant endocrine therapies (ET) that delay relapse by targeting clinically undetectable micrometastatic deposits. Yet, up to 50% of patients relapse even decades after surgery through unknown mechanisms likely involving dormancy. To investigate genetic and transcriptional changes underlying tumor awakening, we analyzed late relapse patients and longitudinally profiled a rare cohort treated with long-term neoadjuvant ETs until progression. Next, we developed an in vitro evolutionary study to record the adaptive strategies of individual lineages in unperturbed parallel experiments. Our data demonstrate that ETs induce nongenetic cell state transitions into dormancy in a stochastic subset of cells via epigenetic reprogramming. Single lineages with divergent phenotypes awaken unpredictably in the absence of recurrent genetic alterations. Targeting the dormant epigenome shows promising activity against adapting cancer cells. Overall, this study uncovers the contribution of epigenetic adaptation to the evolution of resistance to ETs. SIGNIFICANCE: This study advances the understanding of therapy-induced dormancy with potential clinical implications for breast cancer. Estrogen receptor-positive breast cancer cells adapt to endocrine treatment by entering a dormant state characterized by strong heterochromatinization with no recurrent genetic changes. Targeting the epigenetic rewiring impairs the adaptation of cancer cells to ETs. See related commentary by Llinas-Bertran et al., p. 704. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Neoplasias de la Mama , Epigénesis Genética , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Recurrencia Local de Neoplasia/genética , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA