Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Mol Cell ; 81(1): 166-182.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33238161

RESUMEN

The repeating structural unit of metazoan chromatin is the chromatosome, a nucleosome bound to a linker histone, H1. There are 11 human H1 isoforms with diverse cellular functions, but how they interact with the nucleosome remains elusive. Here, we determined the cryoelectron microscopy (cryo-EM) structures of chromatosomes containing 197 bp DNA and three different human H1 isoforms, respectively. The globular domains of all three H1 isoforms bound to the nucleosome dyad. However, the flanking/linker DNAs displayed substantial distinct dynamic conformations. Nuclear magnetic resonance (NMR) and H1 tail-swapping cryo-EM experiments revealed that the C-terminal tails of the H1 isoforms mainly controlled the flanking DNA orientations. We also observed partial ordering of the core histone H2A C-terminal and H3 N-terminal tails in the chromatosomes. Our results provide insights into the structures and dynamics of the chromatosomes and have implications for the structure and function of chromatin.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/química , Microscopía por Crioelectrón , ADN/ultraestructura , Humanos , Nucleosomas/ultraestructura , Isoformas de Proteínas/química
2.
J Biol Chem ; : 107675, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128719

RESUMEN

The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201-214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 µM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1-9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated inter-subunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.

3.
EMBO J ; 40(1): e105666, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33006208

RESUMEN

Copy-out/paste-in transposition is a major bacterial DNA mobility pathway. It contributes significantly to the emergence of antibiotic resistance, often by upregulating expression of downstream genes upon integration. Unlike other transposition pathways, it requires both asymmetric and symmetric strand transfer steps. Here, we report the first structural study of a copy-out/paste-in transposase and demonstrate its ability to catalyze all pathway steps in vitro. X-ray structures of ISCth4 transposase, a member of the IS256 family of insertion sequences, bound to DNA substrates corresponding to three sequential steps in the reaction reveal an unusual asymmetric dimeric transpososome. During transposition, an array of N-terminal domains binds a single transposon end while the catalytic domain moves to accommodate the varying substrates. These conformational changes control the path of DNA flanking the transposon end and the generation of DNA-binding sites. Our results explain the asymmetric outcome of the initial strand transfer and show how DNA binding is modulated by the asymmetric transposase to allow the capture of a second transposon end and to integrate a circular intermediate.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Transposasas/genética , Secuencia de Bases , Sitios de Unión/genética , Catálisis , Dominio Catalítico/genética , Clostridium thermocellum/genética , División del ADN , Proteínas de Unión al ADN/genética , Recombinación Genética/genética
4.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35140179

RESUMEN

S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.


Asunto(s)
Acilcoenzima A/química , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Dominio Catalítico , Membrana Celular/enzimología , Regulación Enzimológica de la Expresión Génica , Humanos , Lipoilación , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos
5.
Genes Dev ; 31(19): 1958-1972, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074736

RESUMEN

Histone CENP-A-containing nucleosomes play an important role in nucleating kinetochores at centromeres for chromosome segregation. However, the molecular mechanisms by which CENP-A nucleosomes engage with kinetochore proteins are not well understood. Here, we report the finding of a new function for the budding yeast Cse4/CENP-A histone-fold domain interacting with inner kinetochore protein Mif2/CENP-C. Strikingly, we also discovered that AT-rich centromere DNA has an important role for Mif2 recruitment. Mif2 contacts one side of the nucleosome dyad, engaging with both Cse4 residues and AT-rich nucleosomal DNA. Both interactions are directed by a contiguous DNA- and histone-binding domain (DHBD) harboring the conserved CENP-C motif, an AT hook, and RK clusters (clusters enriched for arginine-lysine residues). Human CENP-C has two related DHBDs that bind preferentially to DNA sequences of higher AT content. Our findings suggest that a DNA composition-based mechanism together with residues characteristic for the CENP-A histone variant contribute to the specification of centromere identity.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Modelos Moleculares , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae , Secuencia Rica en At , Centrómero/química , Proteína A Centromérica/química , Proteínas Cromosómicas no Histona/química , ADN Satélite/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 50(8): 4529-4544, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35390166

RESUMEN

Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.


Asunto(s)
Vibrio cholerae , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Humanos Par 2/metabolismo , ADN/metabolismo , Replicación del ADN , Dimerización , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plásmidos , Origen de Réplica/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
7.
Nucleic Acids Res ; 50(22): 13128-13142, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537219

RESUMEN

DNA transposon systems are widely used in mammalian cells for genetic modification experiments, but their regulation remains poorly understood. We used biochemical and cell-based assays together with AlphaFold modeling and rational protein redesign to evaluate aspects of piggyBac transposition including the previously unexplained role of the transposase N-terminus and the need for asymmetric transposon ends for cellular activity. We found that phosphorylation at predicted casein kinase II sites in the transposase N-terminus inhibits transposition, most likely by preventing transposase-DNA interactions. Deletion of the region containing these sites releases inhibition thereby enhancing activity. We also found that the N-terminal domain promotes transposase dimerization in the absence of transposon DNA. When the N-terminus is deleted, the transposase gains the ability to carry out transposition using symmetric transposon left ends. This novel activity is also conferred by appending a second C-terminal domain. When combined, these modifications together result in a transposase that is highly active when symmetric transposon ends are used. Our results demonstrate that transposase N-terminal phosphorylation and the requirement for asymmetric transposon ends both negatively regulate piggyBac transposition in mammalian cells. These novel insights into the mechanism and structure of the piggyBac transposase expand its potential use for genomic applications.


Asunto(s)
Elementos Transponibles de ADN , Transposasas , Humanos , Elementos Transponibles de ADN/genética , Fosforilación , Transposasas/metabolismo , Línea Celular
8.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975952

RESUMEN

Enzyme I (EI) is a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate. This reaction initiates a five-step phosphorylation cascade in the bacterial phosphotransferase (PTS) transduction pathway. Under physiological conditions, EI exists in an equilibrium between a functional dimer and an inactive monomer. The monomer-dimer equilibrium is a crucial factor regulating EI activity and the phosphorylation state of the overall PTS. Experimental studies of EI's monomeric state have yet been hampered by the dimer's high thermodynamic stability, which prevents its characterization by standard structural techniques. In this study, we modified the dimerization domain of EI (EIC) by mutating three amino acids involved in the formation of intersubunit salt bridges. The engineered variant forms an active dimer in solution that can bind and hydrolyze PEP. Using hydrostatic pressure as an additional perturbation, we were then able to study the complete dissociation of the variant from 1 bar to 2.5 kbar in the absence and the presence of EI natural ligands. Backbone residual dipolar couplings collected under high-pressure conditions allowed us to determine the conformational ensemble of the isolated EIC monomeric state in solution. Our calculations reveal that three catalytic loops near the dimerization interface become unstructured upon monomerization, preventing the monomeric enzyme from binding its natural substrate. This study provides an atomic-level characterization of EI's monomeric state and highlights the role of the catalytic loops as allosteric connectors controlling both the activity and oligomerization of the enzyme.


Asunto(s)
Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/química , Fosfotransferasas (Aceptor del Grupo Nitrogenado)/metabolismo , Multimerización de Proteína , Pliegue de Proteína , Termodinámica
9.
Genes Dev ; 30(8): 881-91, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27083996

RESUMEN

The role of the zinc finger protein CTCF in organizing the genome within the nucleus is now well established. Widely separated sites on DNA, occupied by both CTCF and the cohesin complex, make physical contacts that create large loop domains. Additional contacts between loci within those domains, often also mediated by CTCF, tend to be favored over contacts between loci in different domains. A large number of studies during the past 2 years have addressed the questions: How are these loops generated? What are the effects of disrupting them? Are there rules governing large-scale genome organization? It now appears that the strongest and evolutionarily most conserved of these CTCF interactions have specific rules for the orientation of the paired CTCF sites, implying the existence of a nonequilibrium mechanism of generation. Recent experiments that invert, delete, or inactivate one of a mating CTCF pair result in major changes in patterns of organization and gene expression in the surrounding regions. What remain to be determined are the detailed molecular mechanisms for re-establishing loop domains and maintaining them after replication and mitosis. As recently published data show, some mechanisms may involve interactions with noncoding RNAs as well as protein cofactors. Many CTCF sites are also involved in other functions such as modulation of RNA splicing and specific regulation of gene expression, and the relationship between these activities and loop formation is another unanswered question that should keep investigators occupied for some time.


Asunto(s)
Cromatina/química , Proteínas Represoras/metabolismo , Animales , Factor de Unión a CCCTC , Cromatina/genética , Metilación de ADN , Regulación de la Expresión Génica , Genoma/genética , Humanos , Unión Proteica , Estructura Terciaria de Proteína/genética , Empalme del ARN/genética , Proteínas Represoras/genética
10.
Biochemistry ; 62(21): 3036-3040, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37788367

RESUMEN

Human annexin A7, a calcium- and phospholipid-binding protein, governs calcium homeostasis, plasma membrane repair, apoptosis, and tumor progression. A7 contains an N-terminal proline-rich domain (PRD; 180 residues, ∼24% prolines) that determines its functional specificity. Using microscopy and dye-binding assays, we show that recombinant A7 and its isolated PRD spontaneously phase separate into spherical condensates, which subsequently transform into ß-sheet-rich fibrils. We demonstrate that fibrillization of A7-PRD proceeds via primary nucleation and fibril-catalyzed secondary nucleation processes, as determined by chemical kinetics, providing a mechanistic basis for its amyloid assembly. This study confirms and highlights a subclass of eukaryotic PRDs prone to forming aggregates with important physiological and pathological implications.


Asunto(s)
Anexina A7 , Calcio , Humanos , Anexina A7/química , Anexina A7/metabolismo , Calcio/metabolismo , Dominios Proteicos , Amiloide/química , Prolina/química
11.
Mol Cell ; 59(4): 628-38, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26212454

RESUMEN

Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.


Asunto(s)
Proteínas de Drosophila/química , Histonas/química , Nucleosomas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Drosophila melanogaster , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/fisiología , Unión Proteica
12.
Proc Natl Acad Sci U S A ; 117(11): 5844-5852, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32127471

RESUMEN

Human profilin I reduces aggregation and concomitant toxicity of the polyglutamine-containing N-terminal region of the huntingtin protein encoded by exon 1 (httex1) and responsible for Huntington's disease. Here, we investigate the interaction of profilin with httex1 using NMR techniques designed to quantitatively analyze the kinetics and equilibria of chemical exchange at atomic resolution, including relaxation dispersion, exchange-induced shifts, and lifetime line broadening. We first show that the presence of two polyproline tracts in httex1, absent from a shorter huntingtin variant studied previously, modulates the kinetics of the transient branched oligomerization pathway that precedes nucleation, resulting in an increase in the populations of the on-pathway helical coiled-coil dimeric and tetrameric species (τex ≤ 50 to 70 µs), while leaving the population of the off-pathway (nonproductive) dimeric species largely unaffected (τex ∼750 µs). Next, we show that the affinity of a single molecule of profilin to the polyproline tracts is in the micromolar range (Kdiss ∼ 17 and ∼ 31 µM), but binding of a second molecule of profilin is negatively cooperative, with the affinity reduced ∼11-fold. The lifetime of a 1:1 complex of httex1 with profilin, determined using a shorter huntingtin variant containing only a single polyproline tract, is shown to be on the submillisecond timescale (τex ∼ 600 µs and Kdiss ∼ 50 µM). Finally, we demonstrate that, in stable profilin-httex1 complexes, the productive oligomerization pathway, leading to the formation of helical coiled-coil httex1 tetramers, is completely abolished, and only the pathway resulting in "nonproductive" dimers remains active, thereby providing a mechanistic basis for how profilin reduces aggregation and toxicity of httex1.


Asunto(s)
Exones , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Profilinas/química , Profilinas/metabolismo , Sitios de Unión , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos , Conformación Proteica , Dominios Proteicos
13.
Proc Natl Acad Sci U S A ; 117(39): 24274-24284, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32917811

RESUMEN

Proline-rich domains (PRDs) are among the most prevalent signaling modules of eukaryotes but often unexplored by biophysical techniques as their heterologous recombinant expression poses significant difficulties. Using a "divide-and-conquer" approach, we present a detailed investigation of a PRD (166 residues; ∼30% prolines) belonging to a human protein ALIX, a versatile adaptor protein involved in essential cellular processes including ESCRT-mediated membrane remodeling, cell adhesion, and apoptosis. In solution, the N-terminal fragment of ALIX-PRD is dynamically disordered. It contains three tandem sequentially similar proline-rich motifs that compete for a single binding site on its signaling partner, TSG101-UEV, as evidenced by heteronuclear NMR spectroscopy. Global fitting of relaxation dispersion data, measured as a function of TSG101-UEV concentration, allowed precise quantitation of these interactions. In contrast to the soluble N-terminal portion, the C-terminal tyrosine-rich fragment of ALIX-PRD forms amyloid fibrils and viscous gels validated using dye-binding assays with amyloid-specific probes, congo red and thioflavin T (ThT), and visualized by transmission electron microscopy. Remarkably, fibrils dissolve at low temperatures (2 to 6 °C) or upon hyperphosphorylation with Src kinase. Aggregation kinetics monitored by ThT fluorescence shows that charge repulsion dictates phosphorylation-mediated fibril dissolution and that the hydrophobic effect drives fibril formation. These data illuminate the mechanistic interplay between interactions of ALIX-PRD with TSG101-UEV and polymerization of ALIX-PRD and its central role in regulating ALIX function. This study also demonstrates the broad functional repertoires of PRDs and uncovers the impact of posttranslational modifications in the modulation of reversible amyloids.


Asunto(s)
Amiloide/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Amiloide/química , Amiloide/genética , Sitios de Unión , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Fosforilación , Prolina/genética , Prolina/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/genética
14.
Proc Natl Acad Sci U S A ; 117(26): 15018-15027, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32527859

RESUMEN

The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description. We also show that if fiber formation is at equilibrium in vivo, the vast majority of cells in most tissues would contain fibers, indicating that it is unlikely that the disease would be survivable once the nonpolymerizing fetal hemoglobin has been replaced by adult hemoglobin S at about 1 y after birth. Calculations of sickling times, based on a recently discovered universal relation between the delay time prior to fiber formation and supersaturation, show that in vivo fiber formation is very far from equilibrium. Our analysis indicates that patients survive because the delay period allows the majority of cells to escape the small vessels of the tissues before fibers form. The enormous sensitivity of the duration of the delay period to intracellular hemoglobin composition also explains why sickle trait, the heterozygous condition, and the compound heterozygous condition of hemoglobin S with pancellular hereditary persistence of fetal hemoglobin are both relatively benign conditions.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/química , Oxígeno/metabolismo , Regulación Alostérica , Eritrocitos/química , Eritrocitos/metabolismo , Hemoglobina Fetal/química , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxígeno/química
15.
Mol Cell ; 53(3): 498-505, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24507717

RESUMEN

Histone variant H2A.Z-containing nucleosomes exist at most eukaryotic promoters and play important roles in gene transcription and genome stability. The multisubunit nucleosome-remodeling enzyme complex SWR1, conserved from yeast to mammals, catalyzes the ATP-dependent replacement of histone H2A in canonical nucleosomes with H2A.Z. How SWR1 catalyzes the replacement reaction is largely unknown. Here, we determined the crystal structure of the N-terminal region (599-627) of the catalytic subunit Swr1, termed Swr1-Z domain, in complex with the H2A.Z-H2B dimer at 1.78 Å resolution. The Swr1-Z domain forms a 310 helix and an irregular chain. A conserved LxxLF motif in the Swr1-Z 310 helix specifically recognizes the αC helix of H2A.Z. Our results show that the Swr1-Z domain can deliver the H2A.Z-H2B dimer to the DNA-(H3-H4)2 tetrasome to form the nucleosome by a histone chaperone mechanism.


Asunto(s)
Adenosina Trifosfatasas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/fisiología , Secuencia de Aminoácidos , Ensamble y Desensamble de Cromatina/genética , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Difracción de Rayos X
16.
Proc Natl Acad Sci U S A ; 116(34): 16717-16722, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31387974

RESUMEN

Common experimental approaches for characterizing structural conversion processes such as protein folding and self-assembly do not report on all aspects of the evolution from an initial state to the final state. Here, we demonstrate an approach that is based on rapid mixing, freeze-trapping, and low-temperature solid-state NMR (ssNMR) with signal enhancements from dynamic nuclear polarization (DNP). Experiments on the folding and tetramerization of the 26-residue peptide melittin following a rapid pH jump show that multiple aspects of molecular structure can be followed with millisecond time resolution, including secondary structure at specific isotopically labeled sites, intramolecular and intermolecular contacts between specific pairs of labeled residues, and overall structural order. DNP-enhanced ssNMR data reveal that conversion of conformationally disordered melittin monomers at low pH to α-helical conformations at neutral pH occurs on nearly the same timescale as formation of antiparallel melittin dimers, about 6 to 9 ms for 0.3 mM melittin at 24 °C in aqueous solution containing 20% (vol/vol) glycerol and 75 mM sodium phosphate. Although stopped-flow fluorescence data suggest that melittin tetramers form quickly after dimerization, ssNMR spectra show that full structural order within melittin tetramers develops more slowly, in ∼60 ms. Time-resolved ssNMR is likely to find many applications to biomolecular structural conversion processes, including early stages of amyloid formation, viral capsid formation, and protein-protein recognition.


Asunto(s)
Meliteno/química , Resonancia Magnética Nuclear Biomolecular , Isótopos de Carbono , Congelación , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Análisis de Componente Principal , Multimerización de Proteína , Estructura Secundaria de Proteína , Factores de Tiempo
17.
Proc Natl Acad Sci U S A ; 116(51): 25446-25455, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31772021

RESUMEN

Bacterial MinD and MinE form a standing oscillatory wave which positions the cell division inhibitor MinC, that binds MinD, everywhere on the membrane except at the midpoint of the cell, ensuring midcell positioning of the cytokinetic septum. During this process MinE undergoes fold switching as it interacts with different partners. We explore the exchange dynamics between major and excited states of the MinE dimer in 3 forms using 15N relaxation dispersion NMR: the full-length protein (6-stranded ß-sheet sandwiched between 4 helices) representing the resting state; a 10-residue N-terminal deletion (Δ10) mimicking the membrane-binding competent state where the N-terminal helix is detached to interact with membrane; and N-terminal deletions of either 30 (Δ30) or 10 residues with an I24N mutation (Δ10/I24N), in which the ß1-strands at the dimer interface are extruded and available to bind MinD, leaving behind a 4-stranded ß-sheet. Full-length MinE samples 2 "excited" states: The first is similar to a full-length/Δ10 heterodimer; the second, also sampled by Δ10, is either similar to or well along the pathway toward the 4-stranded ß-sheet form. Both Δ30 and Δ10/I24N sample 2 excited species: The first may involve destabilization of the ß3- and ß3'-strands at the dimer interface; changes in the second are more extensive, involving further disruption of secondary structure, possibly representing an ensemble of states on the pathway toward restoration of the resting state. The quantitative information on MinE conformational dynamics involving these excited states is crucial for understanding the oscillation pattern self-organization by MinD-MinE interaction dynamics on the membrane.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína
18.
Proc Natl Acad Sci U S A ; 116(36): 17775-17785, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431530

RESUMEN

Legionella pneumophila causes a potentially fatal form of pneumonia by replicating within macrophages in the Legionella-containing vacuole (LCV). Bacterial survival and proliferation within the LCV rely on hundreds of secreted effector proteins comprising high functional redundancy. The vacuolar membrane-localized MavN, hypothesized to support iron transport, is unique among effectors because loss-of-function mutations result in severe intracellular growth defects. We show here an iron starvation response by L. pneumophila after infection of macrophages that was prematurely induced in the absence of MavN, consistent with MavN granting access to limiting cellular iron stores. MavN cysteine accessibilities to a membrane-impermeant label were determined during macrophage infections, revealing a topological pattern supporting multipass membrane transporter models. Mutations to several highly conserved residues that can take part in metal recognition and transport resulted in defective intracellular growth. Purified MavN and mutant derivatives were directly tested for transporter activity after heterologous purification and liposome reconstitution. Proteoliposomes harboring MavN exhibited robust transport of Fe2+, with the severity of defect of most mutants closely mimicking the magnitude of defects during intracellular growth. Surprisingly, MavN was equivalently proficient at transporting Fe2+, Mn2+, Co2+, or Zn2+ Consequently, flooding infected cells with either Mn2+ or Zn2+ allowed collaboration with iron to enhance intracellular growth of L. pneumophila ΔmavN strains, indicating a clear role for MavN in transporting each of these ions. These findings reveal that MavN is a transition-metal-ion transporter that plays a critical role in response to iron limitation during Legionella infection.


Asunto(s)
Proteínas Bacterianas , Proteínas de Transporte de Catión , Legionella pneumophila , Metales/metabolismo , Vacuolas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/metabolismo , Enfermedad de los Legionarios/patología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Células U937 , Vacuolas/genética , Vacuolas/metabolismo
19.
Proc Natl Acad Sci U S A ; 116(9): 3562-3571, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808748

RESUMEN

The N-terminal region of the huntingtin protein, encoded by exon-1, comprises an amphiphilic domain (httNT), a polyglutamine (Q n ) tract, and a proline-rich sequence. Polyglutamine expansion results in an aggregation-prone protein responsible for Huntington's disease. Here, we study the earliest events involved in oligomerization of a minimalistic construct, httNTQ7, which remains largely monomeric over a sufficiently long period of time to permit detailed quantitative NMR analysis of the kinetics and structure of sparsely populated [Formula: see text] oligomeric states, yet still eventually forms fibrils. Global fitting of concentration-dependent relaxation dispersion, transverse relaxation in the rotating frame, and exchange-induced chemical shift data reveals a bifurcated assembly mechanism in which the NMR observable monomeric species either self-associates to form a productive dimer (τex ∼ 30 µs, Kdiss ∼ 0.1 M) that goes on to form a tetramer ([Formula: see text] µs; Kdiss ∼ 22 µM), or exchanges with a "nonproductive" dimer that does not oligomerize further (τex ∼ 400 µs; Kdiss ∼ 0.3 M). The excited state backbone chemical shifts are indicative of a contiguous helix (residues 3-17) in the productive dimer/tetramer, with only partial helical character in the nonproductive dimer. A structural model of the productive dimer/tetramer was obtained by simulated annealing driven by intermolecular paramagnetic relaxation enhancement data. The tetramer comprises a D2 symmetric dimer of dimers with largely hydrophobic packing between the helical subunits. The structural model, validated by EPR distance measurements, illuminates the role of the httNT domain in the earliest stages of prenucleation and oligomerization, before fibril formation.


Asunto(s)
Amiloide/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Amiloide/química , Amiloide/ultraestructura , Cristalografía por Rayos X , Citoesqueleto/química , Citoesqueleto/genética , Exones/genética , Proteína Huntingtina/química , Proteína Huntingtina/ultraestructura , Enfermedad de Huntington/patología , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/genética , Polímeros/química , Dominios Proteicos/genética , Multimerización de Proteína/genética , Relación Estructura-Actividad
20.
Biochemistry ; 60(33): 2519-2523, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34342986

RESUMEN

Insulin-degrading enzyme (IDE) hydrolyzes monomeric polypeptides, including amyloid-ß (Aß) and HIV-1 p6. It also acts as a nonproteolytic chaperone to prevent Aß polymerization. Here we compare interactions of Aß and non-amyloidogenic p6 with IDE. Although both exhibited similar proteolysis rates, the binding kinetics to an inactive IDE characterized using relaxation-based NMR were remarkably different. IDE and Aß formed a sparsely populated complex with a lifetime of milliseconds in which a short hydrophobic cleavage segment of Aß was anchored to IDE. Strikingly, a second and more stable complex was significantly populated with a subsecond lifetime owing to multiple intermolecular contacts between Aß and IDE. By selectively sequestering Aß in this nonproductive complex, IDE likely increases the critical concentration required for fibrillization. In contrast, IDE and p6 formed a transient, submillisecond complex involving a single anchoring p6 motif. Modulation of intermolecular interactions, thus, allows IDE to differentiate between non-amyloidogenic and amyloidogenic substrates.


Asunto(s)
Péptidos beta-Amiloides/química , Insulisina/química , Insulisina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Chaperonas Moleculares/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Péptidos beta-Amiloides/metabolismo , Cinética , Modelos Químicos , Agregado de Proteínas , Pliegue de Proteína , Proteolisis , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA