Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 49(3): 271-280, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37067846

RESUMEN

BACKGROUND: Breast cancer conventional therapeutics are effective; however, they encounter some limitations including multidrug resistance, the presence of pharmacological barriers, and non-selectivity which hinder their optimal therapeutic efficacy. AIM: Overcoming such drawbacks necessitates the development of efficient drug vehicles including lipid-based nanoparticles. This study aimed to quantitatively investigate in-vitro the synergistic therapeutic effect of the novel combination of capsaicin and 5-fluorouracil (5-FU) encapsulated in lipid nanocapsules (LNCs). METHOD: To this end, thorough physicochemical and in-vitro assessments on the breast cancer cell line (MCF-7) were done. The drug-loaded LNCs were characterized using DLS, TEM imaging, stability study, and in-vitro release study. Furthermore, the biological activity of the prepared LNCs was assessed by implementing comparative cytotoxicity studies as well as apoptosis, and cell cycle flow cytometric analyses. RESULTS: The developed nanoformulations were monodisperse with average particle size (PS) of 31, 43.8, and 127.3 nm for empty LNCs, Cap-LNCs, and 5-FU-LNCs, respectively, and with a surface charge of -35.4, -21.7 and -31.4 mV, respectively, reflecting good physical stability. The TEM micrographs revealed the spherical morphology of the drugs-loaded LNCs with comparable PS to that obtained by DLS. on the other hand, all the biological assessments confirmed the superior antiproliferative effect of the combined drug-loaded LNCs over their free drug counterparts. CONCLUSION: Intriguingly, the study findings highlighted the potential synergistic activity of the drugs (capsaicin and 5-FU) and the extensive enhancement of their biological activity through incorporation into LNCs. Such promising results will pave the way to further novel combined nanoformulation in preclinical and clinical studies on breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Nanocápsulas , Humanos , Femenino , Nanocápsulas/química , Neoplasias de la Mama/tratamiento farmacológico , Capsaicina/farmacología , Fluorouracilo/farmacología , Lípidos/química
2.
RSC Adv ; 13(25): 17340-17353, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37304785

RESUMEN

Approximately 1-2% of the reported tuberculosis (TB) cases have skeletal system problems, particularly spinal TB. The complications of spinal TB involve the destruction of vertebral body (VB) and intervertebral disc (IVD) which consequently leads to kyphosis. This work aimed at utilizing different technologies to develop, for the first time, a functional spine unit (FSU) replacement to mimic the structure and function of the VB and IVD along with a good ability to treat spinal TB. 3D-printed scaffolds with different porous patterns (hexagonal or grid) were fabricated from biocompatible acrylonitrile butadiene styrene, and polylactic acid to replace damaged VB and IVD, respectively. The VB scaffold is filled with gelatine-based semi-IPN hydrogel containing mesoporous silica nanoparticles loaded with two antibiotics, rifampicin and levofloxacin, to act against TB. The IVD scaffold incorporates a gelatin hydrogel loaded with regenerative platelet-rich plasma and anti-inflammatory simvastatin-loaded mixed nanomicelles. The obtained results confirmed the superior mechanical strength of both 3D-printed scaffolds and loaded hydrogels as compared to normal bone and IVD with high in vitro (cell proliferation, anti-inflammation and anti-TB), and in vivo biocompatibility profiles. Moreover, the custom-designed replacements have achieved the expected prolonged release of antibiotics up to 60 days. Given the promising study findings, the utilization of the developed drug-eluting scaffold system can be extrapolated to treat not only spinal TB but also to resolve diverse backbone/spine problems that need a critical surgical process including degenerative IVD and its consequences like atherosclerosis, sliding or spondylolisthesis and severe traumatic bone fracture.

3.
Life Sci ; 316: 121379, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623765

RESUMEN

Breast cancer represents one of the top lethal cancer types among the females worldwide. Several factors manipulate the clinical outcome of the treatment as the stage of the cancer upon detection, genetic and hormonal factors, drug resistance and metastasis. Accordingly, drug's repositioning, enhancing the bioavailability and encapsulation into nanoparticles (NPs) are among the predilected pathways for enhanced therapeutic outcome. Niclosamide (NIC) is an anthelmintic drug and has been repositioned as anticancer agent after revealing its anti-neoplastic activity. Piperine (PIP) was used as food spice until its anticancer activity was discovered. However, their hydrophobicity constrains their therapeutic efficiency. The cytotoxicity of both drugs in the free form was tested on MCF-7 cells, and the results indicated a NIC cytotoxicity enhancement by PIP. Then, NIC and PIP were encapsulated successfully into F127-NPs with entrapment efficiency of 97 % and 82 %, respectively. Particle size, zeta potential, TEM and FTIR confirmed the micellization process and drug encapsulation. The developed NIC-NPs and PIP-NPs exerted potent anticancer effect as compared to the free forms. Accordingly, the mixture; NIC-NPs/PIP-NPs was tested and its cytotoxicity exceeded the individually encapsulated drugs. Flowcytometry assessment was performed and demonstrated an induced cell death through the apoptotic stage. Additionally, in-vivo therapeutic efficiency of NIC-NPs/PIP-NPs was assessed through Ehrlich ascites tumor and the nanocombination therapy exerted superior additive anticancer effect when compared to NIC-NPs which is attributed to the PIP-NPs induced bioavailability. The study can be considered the first one investigating the PIP role in bioenhancing the anti-proliferative activity of NIC to combat breast cancer.


Asunto(s)
Antihelmínticos , Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Femenino , Humanos , Niclosamida/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Antihelmínticos/farmacología , Células MCF-7 , Tamaño de la Partícula
4.
Int J Biol Macromol ; 225: 503-517, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403763

RESUMEN

Breast carcinoma is considered one of the most invasive and life-threatening malignancies in females. Mastectomy, radiation therapy, hormone therapy and chemotherapy are the most common treatment choices for breast cancer. Doxorubicin (DOX) is one of the most regularly utilized medications in breast cancer protocols. However, DOX has showed numerous side effects including lethal cardiotoxicity. This study aims to fortify DOX cytotoxicity and lowering its side effects via its combining with the antidiabetic metformin (MET) as an adjuvant therapy, along with its effective delivery using natural platelet-rich plasma (PRP), and newly-developed PRP-mimicking nanocapsules (NCs). The PRP-mimicking NCs were fabricated via layer-by-layer (LBL) deposition of oppositely charged biodegradable and biocompatible chitosan (CS) and alginate (ALG) on a core of synthesized polystyrene nanoparticles (PS NPs) followed by removal of the PS core. Both natural PRP and PRP-mimicking NCs were loaded with DOX and MET adjuvant therapy, followed by their physicochemical characterizations including DLS, FTIR, DSC, and morphological evaluation using TEM. In-vitro drug release studies, cytotoxicity, apoptosis/necrosis, and cell cycle analysis were conducted using MCF-7 breast cancer cells. Also, an in-vivo assessment was carried out using EAC-bearing balb/c mice animal model to evaluate the effect of DOX/MET-loaded natural PRP and PRP-mimicked NCs on tumor weight, volume and growth biomarkers in addition to analyzing the immunohistopathology of the treated tissues. Results confirmed the development of CS/ALG-based PRP-mimicking NCs with a higher loading capacity of both drugs (DOX and MET) and smaller size (259.7 ± 19.3 nm) than natural PRP (489 ± 20.827 nm). Both in-vitro and in-vivo studies were in agreement and confirmed that MET synergized the anticancer activity of DOX against breast cancer. Besides, the developed LBL NCs successfully mimicked the PRP in improving the loaded drugs biological efficiency more than free drugs.


Asunto(s)
Quitosano , Nanocápsulas , Nanopartículas , Neoplasias , Ratones , Animales , Femenino , Nanocápsulas/química , Quitosano/química , Alginatos/química , Mastectomía , Doxorrubicina/química , Nanopartículas/química
6.
Pharmaceutics ; 14(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36559161

RESUMEN

Breast cancer is a prevalent tumor and causes deadly metastatic complications. Myriad cancer types, including breast cancer, are effectively treated by methotrexate (MTX). However, MTX hydrophobicity, adverse effects and the development of resistance have inspired a search for new effective strategies to overcome these challenges. These may include the addition of a bioenhancer and/or encapsulation into appropriate nano-based carriers. In the present study, the anticancer effect of MTX was fortified through dual approaches. First, the concomitant use of piperine (PIP) as a bioenhancer with MTX, which was investigated in the MCF-7 cell line. The results depicted significantly lower IC50 values for the combination (PIP/MTX) than for MTX. Second, PIP and MTX were individually nanoformulated into F-127 pluronic nanomicelles (PIP-NMs) and F-127/P-105 mixed pluronic nanomicelles (MTX-MNMs), respectively, validated by several characterization techniques, and the re-investigated cytotoxicity of PIP-NMs and MTX-MNMs was fortified. Besides, the PIP-NMs/MTX-MNMs demonstrated further cytotoxicity enhancement. The PIP-NMs/MTX-MNMs combination was analyzed by flow cytometry to understand the cell death mechanism. Moreover, the in vivo assessment of PIP-NMs/MTX-MNMs was adopted through the Ehrlich ascites model, which revealed a significant reduction of the tumor weight. However, some results of the tumor markers showed that the addition of PIP-NMs to MTX-MNMs did not significantly enhance the antitumor effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA