Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2320170121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743630

RESUMEN

Pangenomes vary across bacteria. Some species have fluid pangenomes, with a high proportion of genes varying between individual genomes. Other species have less fluid pangenomes, with different genomes tending to contain the same genes. Two main hypotheses have been suggested to explain this variation: differences in species' bacterial lifestyle and effective population size. However, previous studies have not been able to test between these hypotheses because the different features of lifestyle and effective population size are highly correlated with each other, and phylogenetically conserved, making it hard to disentangle their relative importance. We used phylogeny-based analyses, across 126 bacterial species, to tease apart the causal role of different factors. We found that pangenome fluidity was lower in i) host-associated compared with free-living species and ii) host-associated species that are obligately dependent on a host, live inside cells, and are more pathogenic and less motile. In contrast, we found no support for the competing hypothesis that larger effective population sizes lead to more fluid pangenomes. Effective population size appears to correlate with pangenome variation because it is also driven by bacterial lifestyle, rather than because of a causal relationship.


Asunto(s)
Bacterias , Genoma Bacteriano , Filogenia , Bacterias/genética , Bacterias/clasificación
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35193981

RESUMEN

Bacteria produce a range of molecules that are secreted from the cell and can provide a benefit to the local population of cells. Laboratory experiments have suggested that these "public goods" molecules represent a form of cooperation, favored because they benefit closely related cells (kin selection). However, there is a relative lack of data demonstrating kin selection for cooperation in natural populations of bacteria. We used molecular population genetics to test for signatures of kin selection at the genomic level in natural populations of the opportunistic pathogen Pseudomonas aeruginosa We found consistent evidence from multiple traits that genes controlling putatively cooperative traits have higher polymorphism and greater divergence and are more likely to harbor deleterious mutations relative to genes controlling putatively private traits, which are expressed at similar rates. These patterns suggest that cooperative traits are controlled by kin selection, and we estimate that the relatedness for social interactions in P. aeruginosa is r = 0.84. More generally, our results demonstrate how molecular population genetics can be used to study the evolution of cooperation in natural populations.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Genes Bacterianos , Mutación , Pseudomonas aeruginosa/genética , Percepción de Quorum
3.
Proc Biol Sci ; 289(1987): 20221819, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36448285

RESUMEN

The connectivity of a gene, defined as the number of interactions a gene's product has with other genes' products, is a key characteristic of a gene. In prokaryotes, the complexity hypothesis predicts that genes which undergo more frequent horizontal transfer will be less connected than genes which are only very rarely transferred. We tested the role of horizontal gene transfer, and other potentially important factors, by examining the connectivity of chromosomal and plasmid genes, across 134 diverse prokaryotic species. We found that (i) genes on plasmids were less connected than genes on chromosomes; (ii) connectivity of plasmid genes was not correlated with plasmid mobility; and (iii) the sociality of genes (cooperative or private) was not correlated with gene connectivity.


Asunto(s)
Transferencia de Gen Horizontal , Conducta Social , Células Procariotas , ARN
4.
PLoS Biol ; 16(10): e2006671, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30359363

RESUMEN

Pleiotropy has been suggested as a novel mechanism for stabilising cooperation in bacteria and other microbes. The hypothesis is that linking cooperation with a trait that provides a personal (private) benefit can outweigh the cost of cooperation in situations when cooperation would not be favoured by mechanisms such as kin selection. We analysed the theoretical plausibility of this hypothesis, with analytical models and individual-based simulations. We found that (1) pleiotropy does not stabilise cooperation, unless the cooperative and private traits are linked via a genetic architecture that cannot evolve (mutational constraint); (2) if the genetic architecture is constrained in this way, then pleiotropy favours any type of trait and not especially cooperation; (3) if the genetic architecture can evolve, then pleiotropy does not favour cooperation; and (4) there are several alternative explanations for why traits may be linked, and causality can even be predicted in the opposite direction, with cooperation favouring pleiotropy. Our results suggest that pleiotropy could only explain cooperation under restrictive conditions and instead show how social evolution can shape the genetic architecture.


Asunto(s)
Evolución Molecular , Pleiotropía Genética , Interacciones Microbianas/genética , Microbiota/genética , Modelos Genéticos , Simulación por Computador , Pleiotropía Genética/fisiología , Genotipo , Interacciones Microbianas/fisiología , Microbiota/fisiología , Mutación
5.
Trends Genet ; 33(6): 408-419, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28506494

RESUMEN

All of life is social, from genes cooperating to form organisms, to animals cooperating to form societies. Omic approaches offer exceptional opportunities to solve major outstanding problems in the study of how sociality evolves. First, omics can be used to clarify the extent and form of sociality in natural populations. This is especially useful in species where it is difficult to study social traits in natural populations, such as bacteria and other microbes. Second, omics can be used to examine the consequences of sociality for genome evolution and gene expression. This is especially useful in cases where there is clear variation in the level of sociality, such as the social insects. Major tasks for the future are to apply these approaches to a wider range of non-model organisms, and to move from exploratory analyses to the testing of evolutionary theory.


Asunto(s)
Evolución Biológica , Genoma/genética , Genómica , Proteómica , Animales , Regulación de la Expresión Génica/genética , Conducta Social
6.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26311664

RESUMEN

Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations,especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that(i) isolates from later infection stages inhibited earlier infecting strains less,but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage overtime; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections.


Asunto(s)
Bacteriocinas/metabolismo , Fibrosis Quística/microbiología , Pseudomonas aeruginosa/metabolismo , Bacteriocinas/genética , Genoma Bacteriano , Humanos , Fenotipo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Piocinas/metabolismo
7.
Evol Lett ; 7(5): 315-330, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37829498

RESUMEN

Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.

8.
Microb Genom ; 9(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38117204

RESUMEN

Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.


Asunto(s)
Bacterias , Genómica , Bacterias/genética , Genes Bacterianos/genética , Biología Computacional , Antibacterianos , Pseudomonas aeruginosa
9.
Evol Lett ; 7(6): 389-400, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045720

RESUMEN

Pathogenic bacteria respond to antibiotic pressure with the evolution of resistance but survival can also depend on their ability to tolerate antibiotic treatment, known as tolerance. While a variety of resistance mechanisms and underlying genetics are well characterized in vitro and in vivo, an understanding of the evolution of tolerance, and how it interacts with resistance in situ is lacking. We assayed for tolerance and resistance in isolates of Pseudomonas aeruginosa from chronic cystic fibrosis lung infections spanning up to 40 years of evolution, with 3 clinically relevant antibiotics: meropenem, ciprofloxacin, and tobramycin. We present evidence that tolerance is under positive selection in the lung and that it can act as an evolutionary stepping stone to resistance. However, by examining evolutionary patterns across multiple patients in different clone types, a key result is that the potential for an association between the evolution of resistance and tolerance is not inevitable, and difficult to predict.

10.
Nat Commun ; 12(1): 6928, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836945

RESUMEN

The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.


Asunto(s)
Evolución Molecular , Genoma Viral , Interacciones Microbiota-Huesped/genética , Virus/genética , Imitación Molecular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA