Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Opt Express ; 32(6): 9081-9094, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571149

RESUMEN

Integrated photonics has emerged as one of the most promising platforms for quantum applications. The performances of quantum photonic integrated circuits (QPIC) necessitate a demanding optimization to achieve enhanced properties and tailored characteristics with more stringent requirements with respect to their classical counterparts. In this study, we report on the simulation, fabrication, and characterization of a series of fundamental components for photons manipulation in QPIC based on silicon nitride. These include crossing waveguides, multimode-interferometer-based integrated beam splitters (MMIs), asymmetric integrated Mach-Zehnder interferometers (MZIs) based on MMIs, and micro-ring resonators. Our investigation revolves primarily around the visible to near-infrared spectral region, as these integrated structures are meticulously designed and tailored for optimal operation within this wavelength range. By advancing the development of these elementary building blocks, we aim to pave the way for significant improvements in QPIC in a spectral region only little explored so far.

2.
Opt Express ; 32(4): 5380-5396, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439266

RESUMEN

We present the development of a transportable laser frequency stabilization system with application to both optical clocks and a next-generation gravity mission (NGGM) in space. This effort leverages a 5-cm long cubic cavity with crystalline coatings operating at room temperature and with a center wavelength of 1064 nm. The cavity is integrated in a custom vacuum chamber with dedicated low-noise locking electronics. Our vacuum-mounted cavity and control system are well suited for space applications, exhibiting state-of-the-art noise performance while being resilient to radiation exposure, vibration, shock, and temperature variations. Furthermore, we demonstrate a robust means of automatically (re)locking the laser to the cavity when resonance is lost. We show that the mounted cavity is capable of reaching technology readiness level (TRL) 6, paving the way for high-performance ultrastable laser systems and eventually optical atomic clocks amenable to future satellite platforms.

3.
Opt Express ; 29(19): 29615-29630, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614703

RESUMEN

We study the linear and nonlinear response of a unidirectional reflector where a nonlinear breaking of the Lorentz reciprocity is observed. The device under test consists of a racetrack microresonator, with an embedded S-shaped waveguide, coupled to an external bus waveguide (BW). This geometry of the microresonator is known as "taiji" microresonator (TJMR). Here, we show that a full description of the device needs to consider also the role of the BW, which introduces (i) Fabry-Perot oscillations (FPOs) due to reflections at its facets, and (ii) asymmetric losses, which depend on the actual position of the TJMR. At sufficiently low powers the asymmetric loss does not affect the unidirectional behavior, but the FP interference fringes can cancel the effect of the S-shaped waveguide. However, at high input power, both the asymmetric loss and the FPOs contribute to the redistribution of energy between counterpropagating modes within the TJMR. This strongly modifies the nonlinear response, giving rise to counter-intuitive features where, due to the FP effect and the asymmetric losses, the BW properties can determine the violation of the Lorentz reciprocity and, in particular, the difference between the transmittance in the two directions of excitation.

4.
Opt Lett ; 45(12): 3188-3191, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538939

RESUMEN

Electric-field-induced second-harmonic generation is demonstrated in silicon waveguides with reverse biased lateral p-i-n junctions. Phase matching is achieved by periodically poling the applied electric field. Two different poling configurations are compared: in the first, the p- and n-type doped regions of the junctions are on different sides of the waveguide (simple configuration), while in the second, they are alternated periodically across the waveguide sides (interdigitated configuration). Both simulations and experiments show that the generation efficiency is increased by 10 times comparing the interdigitated and simple configurations. The effective second-order susceptibility modulation obtained at a reverse bias voltage of 3.5 V is Δχeff,S(2)≃0.14pm/V for the simple configuration and Δχeff,I(2)≃0.64pm/V for the interdigitated one.

5.
Opt Lett ; 45(12): 3348, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538980

RESUMEN

This publisher's note contains corrections to Opt. Lett.45, 3188 (2020)OPLEDP0146-959210.1364/OL.391988.

6.
Opt Express ; 26(4): 4204-4218, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475273

RESUMEN

In this work, we analyze the role of strain on a set of silicon racetrack resonators presenting different orientations with respect to the applied strain. The strain induces a variation of the resonance wavelength, caused by the photoelastic variation of the material refractive index as well as by the mechanical deformation of the device. In particular, the mechanical deformation alters both the resonator perimeter and the waveguide cross-section. Finite element simulations taking into account all these effects are presented, providing good agreement with experimental results. By studying the role of the resonator orientation we identify interesting features, such as the tuning of the resonance shift from negative to positive values and the possibility of realizing strain insensitive devices.

7.
Sensors (Basel) ; 15(3): 4796-809, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25730483

RESUMEN

In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU(-1) (refractive index unit) are feasible.


Asunto(s)
Técnicas Biosensibles/instrumentación , Dispositivos Ópticos , Refractometría , Silicio/química , Compuestos de Silicona/química
8.
Opt Express ; 20(20): 22934-42, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23037443

RESUMEN

Microresonator devices which possess ultra-high quality factors are essential for fundamental investigations and applications. Microsphere and microtoroid resonators support remarkably high Q's at optical frequencies, while planarity constrains preclude their integration into functional lightwave circuits. Conventional semiconductor processing can also be used to realize ultra-high-Q's with planar wedge-resonators. Still, their full integration with side-coupled dielectric waveguides remains an issue. Here we show the full monolithic integration of a wedge-resonator/waveguide vertically-coupled system on a silicon chip. In this approach the cavity and the waveguide lay in different planes. This permits to realize the shallow-angle wedge while the waveguide remains intact, allowing therefore to engineer a coupling of arbitrary strength between these two. The precise size-control and the robustness against post-processing operation due to its monolithic integration makes this system a prominent platform for industrial-scale integration of ultra-high-Q devices into planar lightwave chips.


Asunto(s)
Dispositivos Ópticos , Refractometría/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Integración de Sistemas
9.
Opt Express ; 17(11): 9434-41, 2009 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-19466196

RESUMEN

Owing to their ability to confine electromagnetic energy in ultrasmall dielectric volumes, micro-disk, ring and toroid resonators hold interest for both specific applications and fundamental investigations. Generally, contributions from various loss channels within these devices lead to limited spectral windows (Q-bands) where highest mode Q-factors manifest. Here we describe a strategy for tuning Q-bands using a new class of micro-resonators, named micro-kylix resonators, in which engineered stress within an initially flat disk results in either concave or convex devices. To shift the Q-band by 60 nm towards short wavelengths in flat micro-disks a 50% diameter reduction is required, which causes severe radiative losses suppressing Q's. With a micro-kylix, we achieve similar tuning and even higher Q's by two orders of magnitude smaller diameter modification (0.4%). The phenomenon relies on geometry-induced smart interplay between modified dispersions of material absorption and radiative loss-related Q-factors. Micro-kylix devices can provide new functionalities and novel technological solutions for photonics and micro-resonator physics.


Asunto(s)
Dispositivos Ópticos , Refractometría/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Vibración
10.
Sci Rep ; 9(1): 1088, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705314

RESUMEN

Strained silicon waveguides have been proposed to break the silicon centrosymmetry, which inhibits second-order nonlinearities. Even if electro-optic effect and second harmonic generation (SHG) were measured, the published results presented plenty of ambiguities due to the concurrence of different effects affecting the process. In this work, the origin of SHG in a silicon waveguide strained by a silicon nitride cladding is investigated in detail. From the measured SHG efficiencies, an effective second-order nonlinear susceptibility of ~0.5 pmV-1 is extracted. To evidence the role of strain, SHG is studied under an external mechanical load, demonstrating no significant dependence on the applied stress. On the contrary, a 254 nm ultraviolet (UV) exposure of the strained silicon waveguide suppresses completely the SHG signal. Since UV irradiation is known to passivate charged defects accumulated in the silicon nitride cladding, this measurement evidences the crucial role of charged centers. In fact, charged defects cause an electric field in the waveguide that via the third order silicon nonlinearity induces the SHG. This conclusion is supported by numerical simulations, which accurately model the experimental results.

11.
Opt Express ; 16(17): 13218-24, 2008 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-18711559

RESUMEN

We report on visible light emission from Si-nanocrystal based optically active microdisk resonators. The room temperature photoluminescence (PL) from single microdisks shows the characteristic modal structure of whispering-gallery modes. The emission is both TE and TM-polarized in 300 nm thick microdisks, while thinner ones (135 nm) support only TE-like modes. Thinner disks have the advantage to filter out higher order radial mode families, allowing for measuring only the most intense first order modal structure. We reveal subnanometer linewidths and corresponding quality factors as high as 2800, limited by the spectral resolution of the experimental setup. Moreover, we observe a modification of mode linewidth by a factor 13 as a function of pump power. The origin of this effect is attributed to an excited carrier absorption loss mechanism.


Asunto(s)
Iluminación/instrumentación , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Silicio/química , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Vibración
12.
Opt Express ; 14(16): 7270-8, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19529096

RESUMEN

We propose a time-dependent, spatially periodic photonic structure which is able to shift the carrier frequency of an optical pulse which propagates through it. Taking advantage of the slow group velocity of light in periodic photonic structures, the wavelength conversion process can be performed with an efficiency close to 1 and without affecting the shape and the coherence of the pulse. Quantitative Finite Difference Time Domain simulations are performed for realistic systems with optical parameters of conventional silicon technology.


Asunto(s)
Diseño Asistido por Computadora , Iluminación/instrumentación , Modelos Teóricos , Dispositivos Ópticos , Fotones , Refractometría/instrumentación , Dispersión de Radiación , Simulación por Computador , Transferencia de Energía , Diseño de Equipo
13.
Phys Rev Lett ; 99(6): 063905, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17930826

RESUMEN

It is well recognized that the transmittance of Anderson localized systems decays exponentially on average with sample size, showing large fluctuations brought up by extremely rare occurrences of necklaces of resonantly coupled states, possessing almost unity transmission. We show here that in a one-dimensional (1D) random photonic system with resonant layers these fluctuations appear to be very regular and have a period defined by the localization length xi of the system. We stress that necklace states are the origin of these well-defined oscillations. We predict that in such a random system efficient transmission channels form regularly each time the increasing sample length fits so-called optimal-order necklaces and demonstrate the phenomenon through numerical experiments. Our results provide new insight into the physics of Anderson localization in random systems with resonant units.

14.
Phys Rev Lett ; 94(11): 113903, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15903858

RESUMEN

We report on the observation of nonlocalized modes or necklace states of light waves in disordered systems in the Anderson localized regime. The samples consist of positional-disordered binary multilayer systems. Anderson localized modes manifest themselves as narrow high-transmission peaks in the transmission spectrum, whereas the average of the logarithm of the transmission coefficient decreases linearly with thickness. Optical necklace states are observed as modes with a characteristic multiresonance time response and relatively fast decay time.

15.
Phys Rev Lett ; 94(12): 127401, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15903959

RESUMEN

We report on the observation of Zener tunneling of light waves in spectral and time-resolved transmission measurements, performed on an optical superlattice made of porous silicon. The structure was designed to have two photonic minibands, spaced by a narrow frequency gap. A gradient in the refractive index was introduced to create two optical Wannier-Stark ladders and, at a critical value of the optical gradient, tunneling between energy bands was observed in the form of an enhanced transmission peak and a characteristic time dependence of the transmission.

16.
Appl Opt ; 44(26): 5415-21, 2005 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-16161654

RESUMEN

We report an experimental study of porous silicon-based rugate filters. We performed filter apodization, following a half-apodization approach, which successfully attenuated the sidelobes at both sides of the photonic stop band. We achieved successful reduction of interference ripples through the insertion of index-matching layers on the first and last interfaces. An apodized dielectric mirror and a rugate filter are compared: Appreciable differences in the harmonic presence and stop-band performance were observed and are commented on. Bandwidth control when index contrast is modified is also demonstrated. Finally, the possibility of combining different rugate filter designs to attain more complex responses is demonstrated by the achievement of a multi-stop-band filter. Numerical calculations for design optimization and comparison with experimental data are reported too.

17.
Phys Rev Lett ; 91(26 Pt 1): 263902, 2003 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-14754052

RESUMEN

We report on the observation of Bloch oscillations in light transport through periodic dielectric systems. By introducing a linear refractive index gradient along the propagation direction the optical equivalent of a Wannier-Stark ladder was obtained. Bloch oscillations were observed as time-resolved oscillations in transmission, in direct analogy to electronic Bloch oscillations in conducting crystals where the Wannier-Stark ladder is obtained via an external electric field. The observed oscillatory behavior is in excellent agreement with transfer matrix calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA