Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Platelets ; 30(2): 256-263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29297721

RESUMEN

Thrombosis is a hallmark of the fatal fungal infection mucormycosis. Yet, the platelet activation pathway in response to mucormycetes is unknown. In this study we determined the platelet aggregation potential of Mucor circinelloides (M. circinelloides) NRRL3631, characterized the signaling pathway facilitating aggregation in response to fungal spores, and identified the influence of the spore developmental stage upon platelet aggregation potential. Using impedance and light-transmission aggregometry, we showed that M. circinelloides induced platelet aggregation in whole blood and in platelet-rich plasma, respectively. The formation of large spore-platelet aggregates was confirmed by light-sheet microscopy, which showed spores dispersed throughout the aggregate. Aggregation potential was dependent on the spore's developmental stage, with the strongest platelet aggregation by spores in mid-germination. Inhibitor studies revealed platelet aggregation was mediated by the low affinity IgG receptor FcγRIIA and integrin αIIbß3; Src and Syk tyrosine kinase signaling; and the secondary mediators TxA2 and ADP. Flow cytometry of antibody stained platelets showed that interaction with spores increased expression of platelet surface integrin αIIbß3 and the platelet activation marker CD62P. Together, this is the first elucidation of the signaling pathways underlying thrombosis formation during a fungal infection, highlighting targets for therapeutic intervention.


Asunto(s)
Mucor/patogenicidad , Agregación Plaquetaria/inmunología , Receptores de IgG/genética , Trombosis/inmunología , Humanos
2.
J Fungi (Basel) ; 7(2)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562068

RESUMEN

Candida albicans infections range from superficial to systemic and are one of the leading causes of fungus-associated nosocomial infections. The innate immune responses during these various infection types differ, suggesting that the host environment plays a key role in modulating the host-pathogen interaction. In addition, C. albicans is able to remodel its cell wall in response to environmental conditions to evade host clearance mechanisms and establish infection in niches, such as the oral and vaginal mucosa. Phagocytes play a key role in clearing C. albicans, which is primarily mediated by Pathogen Associated Molecular Pattern (PAMP)-Pattern Recognition Receptor (PRR) interactions. PRRs such as Dectin-1, DC-SIGN, and TLR2 and TLR4 interact with PAMPs such as ß-glucans, N-mannan and O-mannan, respectively, to trigger the activation of innate immune cells. Innate immune cells exhibit distinct yet overlapping repertoires of PAMPs, resulting in the preferential recognition of particular Candida morphotypes by them. The role of phagocytes in the context of individual infection types also differs, with neutrophils playing a prominent role in kidney infections, and dendritic cells playing a prominent role in skin infections. In this review, we provide an overview of the key receptors involved in the detection of C. albicans and discuss the differential innate immune responses to C. albicans seen in different infection types such as vulvovaginal candidiasis (VVC) and oral candidiasis.

3.
J Fungi (Basel) ; 3(3)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-29371565

RESUMEN

Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA