Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 605(7911): 659-662, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35614244

RESUMEN

The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1-4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser (FEL)5, a formidable tool to investigate matter at the sub-atomic level by generating coherent light pulses with sub-ångström wavelengths and sub-femtosecond durations6,7. So far, however, the high-energy electron beams required to operate FELs had to be obtained through the use of conventional large-size radio-frequency (RF) accelerators, bound to a sizeable footprint as a result of their limited accelerating fields. Here we report the experimental evidence of FEL lasing by a compact (3-cm) particle-beam-driven plasma accelerator. The accelerated beams are completely characterized in the six-dimensional phase space and have high quality, comparable with state-of-the-art accelerators8. This allowed the observation of narrow-band amplified radiation in the infrared range with typical exponential growth of its intensity over six consecutive undulators. This proof-of-principle experiment represents a fundamental milestone in the use of plasma-based accelerators, contributing to the development of next-generation compact facilities for user-oriented applications9.

2.
Phys Rev Lett ; 129(23): 234801, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563228

RESUMEN

The breakthrough provided by plasma-based accelerators enabled unprecedented accelerating fields by boosting electron beams to gigaelectronvolt energies within a few centimeters [1-4]. This, in turn, allows the realization of ultracompact light sources based on free-electron lasers (FELs) [5], as demonstrated by two pioneering experiments that reported the observation of self-amplified spontaneous emission (SASE) driven by plasma-accelerated beams [6,7]. However, the lack of stability and reproducibility due to the intrinsic nature of the SASE process (whose amplification starts from the shot noise of the electron beam) may hinder their effective implementation for user purposes. Here, we report a proof-of-principle experiment using plasma-accelerated beams to generate stable and reproducible FEL light seeded by an external laser. FEL radiation is emitted in the infrared range, showing the typical exponential growth of its energy over six consecutive undulators. Compared to SASE, the seeded FEL pulses have energies 2 orders of magnitude larger and stability that is 3 times higher.

3.
Phys Rev Lett ; 120(2): 023901, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376703

RESUMEN

Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (∼284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

4.
Phys Rev Lett ; 119(18): 184802, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219607

RESUMEN

In linac-driven free-electron lasers, colliders, and energy recovery linacs, a common way to compress the electron bunch to kiloampere level is based upon the implementation of a magnetic dispersive element that converts particle energy deviation into a path-length difference. Nonlinearities of such a process are usually compensated by enabling a high harmonic rf structure properly tuned in amplitude and phase. This approach is however not straightforward, e.g., in C-band and X-band linacs. In this Letter we demonstrate that the longitudinal self-induced field excited by the electron beam itself is able to linearize the compression process without any use of high harmonic rf structure. The method is implemented at the FERMI linac, with the resulting high quality beam used to drive the seeded free-electron laser during user experiments.

5.
Phys Rev Lett ; 119(7): 073203, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949652

RESUMEN

Single-photon laser-enabled Auger decay (spLEAD) is predicted theoretically [B. Cooper and V. Averbukh, Phys. Rev. Lett. 111, 083004 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.083004] and here we report its first experimental observation in neon. Using coherent, bichromatic free-electron laser pulses, we detect the process and coherently control the angular distribution of the emitted electrons by varying the phase difference between the two laser fields. Since spLEAD is highly sensitive to electron correlation, this is a promising method for probing both correlation and ultrafast hole migration in more complex systems.

6.
Phys Rev Lett ; 118(3): 033202, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157370

RESUMEN

The hitherto unexplored two-photon doubly excited states [Ne^{*}(2p^{-1}3s)]_{2} were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne_{2}^{+} ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

7.
Phys Rev Lett ; 117(27): 276806, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084773

RESUMEN

Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

8.
Faraday Discuss ; 194: 283-303, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27711831

RESUMEN

The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.

9.
J Synchrotron Radiat ; 22(3): 485-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931057

RESUMEN

FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.

10.
Phys Rev Lett ; 114(1): 013901, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615469

RESUMEN

We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model.

11.
Phys Rev Lett ; 115(21): 214801, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26636852

RESUMEN

Laser-heater systems are essential tools to control and optimize high-gain free-electron lasers (FELs) working in the x-ray wavelength range. Indeed, these systems induce a controllable increase of the energy spread of the electron bunch. The heating suppresses longitudinal microbunching instability which otherwise would limit the FEL performance. Here, we demonstrate that, through the action of the microbunching instability, a long-wavelength modulation of the electron beam induced by the laser heater at low energy can persist until the beam entrance into the undulators. This coherent longitudinal modulation is exploited to control the FEL spectral properties, in particular, multicolor extreme-ultraviolet FEL pulses can be generated through a frequency mixing of the modulations produced by the laser heater and the seed laser in the electron beam. We present an experimental demonstration of this novel configuration carried out at the FERMI FEL.

12.
Phys Rev Lett ; 115(1): 014801, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26182099

RESUMEN

We present the experimental evidence of the generation of coherent and statistically stable two-color free-electron laser radiation obtained by seeding an electron beam double peaked in energy with a laser pulse single spiked in frequency. The radiation presents two neat spectral lines, with time delay, frequency separation, and relative intensity that can be accurately controlled. The analysis of the emitted radiation shows a temporal coherence and a shot-to-shot regularity in frequency significantly enhanced with respect to the self-amplified spontaneous emission.


Asunto(s)
Electrones , Rayos Láser , Color , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Análisis Espectral/instrumentación , Análisis Espectral/métodos
13.
Phys Rev Lett ; 112(11): 114802, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702379

RESUMEN

Laser-heater systems have been demonstrated to be an important component for the accelerators that drive high gain free electron laser (FEL) facilities. These heater systems suppress longitudinal microbunching instabilities by inducing a small and controllable slice energy spread to the electron beam. For transversely uniform heating, the energy spread augmentation is characterized by a non-Gaussian distribution. In this Letter, we demonstrate experimentally that in addition to suppression of the microbunching instability, the laser heater-induced energy distribution can be preserved to the FEL undulator entrance, significantly impacting the performance of high-gain harmonic generation (HGHG) FELs, especially at soft x-ray wavelengths. In particular, we show that the FEL intensity has several local maxima as a function of the induced heating caused by the non-Gaussian energy distribution together with a strong enhancement of the power at high harmonics relative to that expected for an electron beam with an equivalent Gaussian energy spread at an undulator entrance. These results suggest that a single stage HGHG FEL can produce scientifically interesting power levels at harmonic numbers m ≥ 25 and with current seed laser technology could reach output photon energies above 100 eV or greater.

14.
Phys Rev Lett ; 112(4): 044801, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24580459

RESUMEN

Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.


Asunto(s)
Electrones , Rayos Láser , Aceleradores de Partículas/instrumentación , Modelos Teóricos , Dinámicas no Lineales
15.
Phys Rev Lett ; 110(4): 044801, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25166168

RESUMEN

We report measurements demonstrating the concept of the free-electron laser (FEL) superradiant cascade. Radiation (λ(rad) = 200 nm) at the second harmonic of a short, intense seed laser pulse (λ(seed) = 400 nm) was generated by the cascaded FEL scheme at the transition between the modulator and radiator undulator sections. The superradiance of the ultrashort pulse is confirmed by detailed measurements of the resulting spectral structure, the intensity level of the produced harmonics, and the trend of the energy growth along the undulator. These results are compared to numerical particle simulations using the FEL code GENESIS 1.3 and show a satisfactory agreement.

16.
Phys Rev Lett ; 111(11): 114802, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24074094

RESUMEN

We present the experimental demonstration of a new scheme for the generation of ultrashort pulse trains based on free-electron-laser (FEL) emission from a multipeaked electron energy distribution. Two electron beamlets with energy difference larger than the FEL parameter ρ have been generated by illuminating the cathode with two ps-spaced laser pulses, followed by a rotation of the longitudinal phase space by velocity bunching in the linac. The resulting self-amplified spontaneous emission FEL radiation, measured through frequency-resolved optical gating diagnostics, reveals a double-peaked spectrum and a temporally modulated pulse structure.

17.
J Phys Chem Lett ; 14(1): 24-31, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36562987

RESUMEN

An open-loop control scheme of molecular fragmentation based on transient molecular alignment combined with single-photon ionization induced by a short-wavelength free electron laser (FEL) is demonstrated for the acetylene cation. Photoelectron spectra are recorded, complementing the ion yield measurements, to demonstrate that such control is the consequence of changes in the electronic response with molecular orientation relative to the ionizing field. We show that stable C2H2+ cations are mainly produced when the molecules are parallel or nearly parallel to the FEL polarization, while the hydrogen fragmentation channel (C2H2+ → C2H+ + H) predominates when the molecule is perpendicular to that direction, thus allowing one to distinguish between the two photochemical processes. The experimental findings are supported by state-of-the art theoretical calculations.

18.
Phys Rev Lett ; 108(16): 164801, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22680723

RESUMEN

Higher order harmonic generation in a free-electron laser amplifier operating in the superradiant regime [R. H. Dicke, Phys. Rev. 93, 99 (1954).] has been observed. Superradiance has been induced by seeding a single-pass amplifier with the second harmonic of a Ti:sapphire laser, generated in a ß-Barium borate crystal, at seed intensities comparable to the free-electron laser saturation intensity. Pulse energy and spectral distributions of the harmonics up to the 11th order have been measured and compared with simulations.

19.
Phys Rev Lett ; 106(14): 144801, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21561195

RESUMEN

We report the first experimental implementation of a method based on simultaneous use of an energy chirp in the electron beam and a tapered undulator, for the generation of ultrashort pulses in a self-amplified spontaneous emission mode free-electron laser (SASE FEL). The experiment, performed at the SPARC FEL test facility, demonstrates the possibility of compensating the nominally detrimental effect of the chirp by a proper taper of the undulator gaps. An increase of more than 1 order of magnitude in the pulse energy is observed in comparison to the untapered case, accompanied by FEL spectra where the typical SASE spiking is suppressed.

20.
Phys Rev Lett ; 107(22): 224801, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22182029

RESUMEN

The injection of a seed in a free-electron laser (FEL) amplifier reduces the saturation length and improves the longitudinal coherence. A cascaded FEL, operating in the high-gain harmonic-generation regime, allows us to extend the beneficial effects of the seed to shorter wavelengths. We report on the first operation of a high-gain harmonic-generation free-electron laser, seeded with harmonics generated in gas. The third harmonics of a Ti:sapphire laser, generated in a gas cell, has been amplified and up-converted to its second harmonic (λ(rad)=133 nm) in a FEL cascaded configuration based on a variable number of modulators and radiators. We studied the transition between coherent harmonic generation and superradiant regime, optimizing the laser performances with respect to the number of modulators and radiators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA