Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Basic Res Cardiol ; 119(2): 193-213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38329498

RESUMEN

The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.


Asunto(s)
Aterosclerosis , Calcinosis , Placa Aterosclerótica , Humanos , Macrófagos , Colágeno , Estrés Mecánico
2.
J Lipid Res ; 62: 100020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581415

RESUMEN

Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques.


Asunto(s)
Enfermedades de las Arterias Carótidas
3.
Stroke ; 52(8): 2510-2517, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34078112

RESUMEN

Background and Purpose: Mechanical properties of thromboemboli play an important role in the efficacy of endovascular thrombectomy (EVT) for acute ischemic stroke. However, very limited data on mechanical properties of human stroke thrombi are available. We aimed to mechanically characterize thrombi retrieved with EVT, and to assess the relationship between thrombus composition and thrombus stiffness. Methods: Forty-one thrombi from 19 patients with acute stroke who underwent EVT between July and October 2019 were mechanically analyzed, directly after EVT. We performed unconfined compression experiments and determined tangent modulus at 75% strain (Et75) as a measure for thrombus stiffness. Thrombi were histologically analyzed for fibrin/platelets, erythrocytes, leukocytes, and platelets, and we assessed the relationship between histological components and Et75 with univariable and multivariable linear mixed regression. Results: Median Et75 was 560 (interquartile range, 393­1161) kPa. In the multivariable analysis, fibrin/platelets were associated with increased Et75 (aß, 9 [95% CI, 5 to 13]) kPa, erythrocytes were associated with decreased Et75% (aß, −9 [95% CI, −5 to −13]) kPa. We found no association between leukocytes and Et75. High platelet values were strongly associated with increased Et75 (aß, 56 [95% CI, 38­73]). Conclusions: Fibrin/platelet content of thrombi retrieved with EVT for acute ischemic stroke is strongly associated with increased thrombus stiffness. For thrombi with high platelet values, there was a very strong relationship with thrombus stiffness. Our data provide a basis for future research on the development of next-generation EVT devices tailored to thrombus composition.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Isquemia Encefálica/cirugía , Procedimientos Endovasculares/métodos , Accidente Cerebrovascular Isquémico/cirugía , Trombectomía/métodos , Trombosis/cirugía , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Procedimientos Endovasculares/instrumentación , Femenino , Humanos , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/fisiopatología , Masculino , Persona de Mediana Edad , Trombectomía/instrumentación , Trombosis/patología , Trombosis/fisiopatología
4.
Eur Heart J ; 41(31): 2997-3004, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32402086

RESUMEN

Despite advanced understanding of the biology of atherosclerosis, coronary heart disease remains the leading cause of death worldwide. Progress has been challenging as half of the individuals who suffer sudden cardiac death do not experience premonitory symptoms. Furthermore, it is well-recognized that also a plaque that does not cause a haemodynamically significant stenosis can trigger a sudden cardiac event, yet the majority of ruptured or eroded plaques remain clinically silent. In the past 30 years since the term 'vulnerable plaque' was introduced, there have been major advances in the understanding of plaque pathogenesis and pathophysiology, shifting from pursuing features of 'vulnerability' of a specific lesion to the more comprehensive goal of identifying patient 'cardiovascular vulnerability'. It has been also recognized that aside a thin-capped, lipid-rich plaque associated with plaque rupture, acute coronary syndromes (ACS) are also caused by plaque erosion underlying between 25% and 60% of ACS nowadays, by calcified nodule or by functional coronary alterations. While there have been advances in preventive strategies and in pharmacotherapy, with improved agents to reduce cholesterol, thrombosis, and inflammation, events continue to occur in patients receiving optimal medical treatment. Although at present the positive predictive value of imaging precursors of the culprit plaques remains too low for clinical relevance, improving coronary plaque imaging may be instrumental in guiding pharmacotherapy intensity and could facilitate optimal allocation of novel, more aggressive, and costly treatment strategies. Recent technical and diagnostic advances justify continuation of interdisciplinary research efforts to improve cardiovascular prognosis by both systemic and 'local' diagnostics and therapies. The present state-of-the-art document aims to present and critically appraise the latest evidence, developments, and future perspectives in detection, prevention, and treatment of 'high-risk' plaques occurring in 'vulnerable' patients.


Asunto(s)
Síndrome Coronario Agudo , Aterosclerosis , Enfermedad de la Arteria Coronaria , Enfermedad Coronaria , Placa Aterosclerótica , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Humanos , Placa Aterosclerótica/diagnóstico por imagen
5.
Eur J Nucl Med Mol Imaging ; 47(12): 2856-2865, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32291511

RESUMEN

PURPOSE: Atherosclerotic plaque development and progression signifies a complex inflammatory disease mediated by a multitude of proinflammatory leukocyte subsets. Using single photon emission computed tomography (SPECT) coupled with computed tomography (CT), this study tested a new dual-isotope acquisition protocol to assess each radiotracer's capability to identify plaque phenotype and inflammation levels pertaining to leukocytes expressing leukocyte function-associated antigen-1 (LFA-1) and the leukocyte subset of proinflammatory macrophages expressing somatostatin receptor subtype-2 (SST2). Individual radiotracer uptake was quantified and the presence of corresponding immunohistological cell markers was assessed. METHODS: Human symptomatic carotid plaque segments were obtained from endarterectomy. Segments were incubated in dual-isotope radiotracers [111In]In-DOTA-butylamino-NorBIRT ([111In]In-Danbirt) and [99mTc]Tc-[N0-14,Asp0,Tyr3]-octreotate ([99mTc]Tc-Demotate 2) before scanning with SPECT/CT. Plaque phenotype was classified as pathological intimal thickening, fibrous cap atheroma or fibrocalcific using histology sections based on distinct morphological characteristics. Plaque segments were subsequently immuno-stained with LFA-1 and SST2 and quantified in terms of positive area fraction and compared against the corresponding SPECT images. RESULTS: Focal uptake of co-localising dual-radiotracers identified the heterogeneous distribution of inflamed regions in the plaques which co-localised with positive immuno-stained regions of LFA-1 and SST2. [111In]In-Danbirt and [99mTc]Tc-Demotate 2 uptake demonstrated a significant positive correlation (r = 0.651; p = 0.001). Fibrous cap atheroma plaque phenotype correlated with the highest [111In]In-Danbirt and [99mTc]Tc-Demotate 2 uptake compared with fibrocalcific plaques and pathological intimal thickening phenotypes, in line with the immunohistological analyses. CONCLUSION: A dual-isotope acquisition protocol permits the imaging of multiple leukocyte subsets and the pro-inflammatory macrophages simultaneously in atherosclerotic plaque tissue. [111In]In-Danbirt may have added value for assessing the total inflammation levels in atherosclerotic plaques in addition to classifying plaque phenotype.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Aterosclerosis/diagnóstico por imagen , Humanos , Isótopos , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada de Emisión de Fotón Único
6.
Eur Heart J ; 39(18): 1602-1609, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29409057

RESUMEN

Aims: As a sine qua non for arterial wall physiology, local hemodynamic forces such as endothelial shear stress (ESS) may influence long-term vessel changes as bioabsorbable scaffolds dissolve. The aim of this study was to perform serial computational fluid dynamic (CFD) simulations to examine immediate and long-term haemodynamic and vascular changes following bioresorbable scaffold placement. Methods and results: Coronary arterial models with long-term serial assessment (baseline and 5 years) were reconstructed through fusion of intravascular optical coherence tomography and angiography. Pulsatile non-Newtonian CFD simulations were performed to calculate the ESS and relative blood viscosity. Time-averaged, systolic, and diastolic results were compared between follow-ups. Seven patients (seven lesions) were included in this analysis. A marked heterogeneity in ESS and localised regions of high blood viscosity were observed post-implantation. Percent vessel area exposed to low averaged ESS (<1 Pa) significantly decreased over 5 years (15.92% vs. 4.99%, P < 0.0001) whereas moderate (1-7 Pa) and high ESS (>7 Pa) did not significantly change (moderate ESS: 76.93% vs. 80.7%, P = 0.546; high ESS: 7.15% vs. 14.31%, P = 0.281), leading to higher ESS at follow-up. A positive correlation was observed between baseline ESS and change in lumen area at 5 years (P < 0.0001). Maximum blood viscosity significantly decreased over 5 years (4.30 ± 1.54 vs. 3.21± 0.57, P = 0.028). Conclusion: Immediately after scaffold implantation, coronary arteries demonstrate an alternans of extremely low and high ESS values and localized areas of high blood viscosity. These initial local haemodynamic disturbances may trigger fibrin deposition and thrombosis. Also, low ESS can promote neointimal hyperplasia, but may also contribute to appropriate scaffold healing with normalisation of ESS and reduction in peak blood viscosity by 5 years.


Asunto(s)
Implantes Absorbibles , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Modelos Cardiovasculares , Andamios del Tejido , Fenómenos Biomecánicos , Vasos Coronarios/cirugía , Endotelio Vascular/cirugía , Hidrodinámica , Imagenología Tridimensional , Estrés Mecánico , Factores de Tiempo , Tomografía de Coherencia Óptica
7.
Radiology ; 289(1): 119-125, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30015586

RESUMEN

Purpose To study the feasibility of high-frame-rate (HFR) contrast material-enhanced (CE) ultrasound particle image velocimetry (PIV), or echo PIV, in the abdominal aorta. Materials and Methods Fifteen healthy participants (six men; median age, 23 years [age range, 18-34 years]; median body mass index, 20.3 kg/m2 [range, 17.3-24.9 kg/m2]) underwent HFR CE US. US microbubbles were injected at incremental doses (0.25, 0.5, 0.75, and 1.5 mL), with each dose followed by US measurement to determine the optimal dosage. Different US mechanical index values were evaluated (0.09, 0.06, 0.03, and 0.01) in a diverging wave acquisition scheme. PIV analysis was performed via pairwise cross-correlation of all captured images. Participants also underwent phase-contrast MRI. The echo PIV and phase-contrast MRI velocity profiles were compared via calculation of similarity index and relative difference in peak velocity. Results Visualization of the aortic bifurcation with HFR CE US was successful in all participants. Optimal echo PIV results were achieved with the lowest contrast agent dose of 0.25 mL in combination with the lowest mechanical indexes (0.01 or 0.03). Substantial bubble destruction occurred at higher mechanical indexes (≥0.06). Flow patterns were qualitatively similar in the echo PIV and MR images. The echo PIV and MRI velocity profiles showed good agreement (similarity index, 0.98 and 0.99; difference in peak velocity, 8.5% and 17.0% in temporal and spatial profiles, respectively). Conclusion Quantification of blood flow in the human abdominal aorta with US particle image velocimetry (echo PIV) is feasible. Use of echo PIV has potential in the clinical evaluation of aortic disease. © RSNA, 2018 Online supplemental material is available for this article.


Asunto(s)
Aorta Abdominal/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Reología/métodos , Ultrasonografía/métodos , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
8.
Eur Heart J ; 38(6): 400-412, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-27118197

RESUMEN

Cumulative evidence from histology-based studies demonstrate that the currently available intravascular imaging techniques have fundamental limitations that do not allow complete and detailed evaluation of plaque morphology and pathobiology, limiting the ability to accurately identify high-risk plaques. To overcome these drawbacks, new efforts are developing for data fusion methodologies and the design of hybrid, dual-probe catheters to enable accurate assessment of plaque characteristics, and reliable identification of high-risk lesions. Today several dual-probe catheters have been introduced including combined near infrared spectroscopy-intravascular ultrasound (NIRS-IVUS), that is already commercially available, IVUS-optical coherence tomography (OCT), the OCT-NIRS, the OCT-near infrared fluorescence (NIRF) molecular imaging, IVUS-NIRF, IVUS intravascular photoacoustic imaging and combined fluorescence lifetime-IVUS imaging. These multimodal approaches appear able to overcome limitations of standalone imaging and provide comprehensive visualization of plaque composition and plaque biology. The aim of this review article is to summarize the advances in hybrid intravascular imaging, discuss the technical challenges that should be addressed in order to have a use in the clinical arena, and present the evidence from their first applications aiming to highlight their potential value in the study of atherosclerosis.


Asunto(s)
Técnicas de Imagen Cardíaca/tendencias , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Imagen Multimodal/tendencias , Placa Aterosclerótica/diagnóstico por imagen , Angiografía por Tomografía Computarizada/tendencias , Angiografía Coronaria/tendencias , Angiografía con Fluoresceína/tendencias , Humanos , Técnicas Fotoacústicas/tendencias , Espectroscopía Infrarroja Corta/tendencias , Tomografía de Coherencia Óptica/tendencias , Ultrasonografía Intervencional/tendencias
9.
J Struct Biol ; 200(1): 28-35, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28838817

RESUMEN

Atherosclerotic plaque rupture is the primary trigger of fatal cardiovascular events. Fibrillar collagen in atherosclerotic plaques and their directionality are anticipated to play a crucial role in plaque rupture. This study aimed assessing 3D fiber orientations and architecture in atherosclerotic plaques for the first time. Seven carotid plaques were imaged ex-vivo with a state-of-the-art Diffusion Tensor Imaging (DTI) technique, using a high magnetic field (9.4Tesla) MRI scanner. A 3D spin-echo sequence with uni-polar diffusion sensitizing pulsed field gradients was utilized for DTI and fiber directions were assessed from diffusion tensor measurements. The distribution of the 3D fiber orientations in atherosclerotic plaques were quantified and the principal fiber orientations (circumferential, longitudinal or radial) were determined. Overall, 52% of the fiber orientations in the carotid plaque specimens were closest to the circumferential direction, 34% to the longitudinal direction, and 14% to the radial direction. Statistically no significant difference was measured in the amount of the fiber orientations between the concentric and eccentric plaque sites. However, concentric plaque sites showed a distinct structural organization, where the principally longitudinally oriented fibers were closer to the luminal side and the principally circumferentially oriented fibers were located more abluminally. The acquired unique information on 3D plaque fiber direction will help understanding pathobiological mechanisms of atherosclerotic plaque progression and pave the road to more realistic biomechanical plaque modeling for rupture assessment.


Asunto(s)
Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/patología , Colágenos Fibrilares/química , Placa Aterosclerótica/patología , Anciano , Anciano de 80 o más Años , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Imagen de Difusión Tensora , Colágenos Fibrilares/ultraestructura , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/diagnóstico por imagen , Estructura Cuaternaria de Proteína
10.
Am J Physiol Heart Circ Physiol ; 310(10): H1304-12, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26945083

RESUMEN

The aim of this study was to determine if reliable patient-specific wall shear stress (WSS) can be computed when diameter-based scaling laws are used to impose the boundary conditions for computational fluid dynamics. This study focused on mildly diseased human coronary bifurcations since they are predilection sites for atherosclerosis. Eight patients scheduled for percutaneous coronary intervention were imaged with angiography. The velocity proximal and distal of a bifurcation was acquired with intravascular Doppler measurements. These measurements were used for inflow and outflow boundary conditions for the first set of WSS computations. For the second set of computations, absolute inflow and outflow ratios were derived from geometry-based scaling laws based on angiography data. Normalized WSS maps per segment were obtained by dividing the absolute WSS by the mean WSS value. Absolute and normalized WSS maps from the measured-approach and the scaled-approach were compared. A reasonable agreement was found between the measured and scaled inflows, with a median difference of 0.08 ml/s [-0.01; 0.20]. The measured and the scaled outflow ratios showed a good agreement: 1.5 percentage points [-19.0; 4.5]. Absolute WSS maps were sensitive to the inflow and outflow variations, and relatively large differences between the two approaches were observed. For normalized WSS maps, the results for the two approaches were equivalent. This study showed that normalized WSS can be obtained from angiography data alone by applying diameter-based scaling laws to define the boundary conditions. Caution should be taken when absolute WSS is assessed from computations using scaled boundary conditions.


Asunto(s)
Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Circulación Coronaria , Vasos Coronarios/diagnóstico por imagen , Modelos Cardiovasculares , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Ultrasonografía Doppler , Ultrasonografía Intervencional/métodos , Velocidad del Flujo Sanguíneo , Simulación por Computador , Enfermedad de la Arteria Coronaria/patología , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Humanos , Hidrodinámica , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estrés Mecánico
11.
Biomed Eng Online ; 15(Suppl 2): 156, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28155699

RESUMEN

BACKGROUND: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required. However, a protocol to reconstruct 3D murine vasculature using this animal model is lacking. In this project, we evaluated the adequacy of eXIA 160, a small animal contrast agent, for assessing murine vascular network on micro-CT. Also, a protocol was established for vessel geometry segmentation and WSS analysis. METHODS: A tapering cast was placed around the right common carotid artery (RCCA) of ApoE-/- mice (n = 8). Contrast-enhanced micro-CT was performed using eXIA 160. An innovative local threshold-based segmentation procedure was implemented to reconstruct 3D geometry of the RCCA. The reconstructed RCCA was compared to the vessel geometry using a global threshold-based segmentation method. Computational fluid dynamics was applied to compute the velocity field and WSS distribution along the RCCA. RESULTS: eXIA 160-enhanced micro-CT allowed clear visualization and assessment of the RCCA in all eight animals. No adverse biological effects were observed from the use of eXIA 160. Segmentation using local threshold values generated more accurate RCCA geometry than the global threshold-based approach. Mouse-specific velocity data and the RCCA geometry generated 3D WSS maps with high resolution, enabling quantitative analysis of WSS. In all animals, we observed low WSS upstream of the cast. Downstream of the cast, asymmetric WSS patterns were revealed with variation in size and location between animals. CONCLUSIONS: eXIA 160 provided good contrast to reconstruct 3D vessel geometry and determine WSS patterns in the RCCA of the atherosclerotic mouse model. We established a novel local threshold-based segmentation protocol for RCCA reconstruction and WSS computation. The observed differences between animals indicate the necessity to use mouse-specific data for WSS analysis. For our future work, our protocol makes it possible to study in vivo WSS longitudinally over a growing plaque.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiopatología , Medios de Contraste/química , Microtomografía por Rayos X/métodos , Animales , Apolipoproteínas E/genética , Velocidad del Flujo Sanguíneo , Vasos Coronarios/patología , Células Endoteliales/citología , Endotelio Vascular/fisiopatología , Femenino , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Resistencia al Corte , Estrés Mecánico
12.
Biomed Eng Online ; 15(1): 48, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27145748

RESUMEN

BACKGROUND: Stress calculations in atherosclerotic coronary vulnerable plaques can aid in predicting coronary cap rupture. In vivo plaque geometry and composition of coronary arteries can merely be obtained via intravascular imaging. Only optical driven imaging techniques have sufficient resolution to visualize the fibrous cap, but due to limited penetration depth deeper components such as the backside of the necrotic core (NC) are generally not visible. The goal of this study was to investigate whether peak cap stresses can be approximated by reconstructing the backside of the NC. METHODS: Manual segmentations of coronary histological cross-sections served as a geometrical ground truth and were obtained from seven patients resulting in 73 NCs. Next, the backside was removed and reconstructed according to an estimation of the relative necrotic core thickness (rNCt). The rNCt was estimated at three locations along the NC angle and based on either group averaged parameters or plaque specific parameters. Stress calculations were performed in both the ground truth geometry and the reconstructed geometries and compared. RESULTS: Good geometrical agreement was found between the ground truth NC and the reconstructed NCs, based on group averaged rNCt estimation and plaque specific rNCt estimation, measuring the NC area difference (25.1 % IQR 14.0-41.3 % and 17.9 % IQR 9.81-32.7 %) and similarity index (0.85 IQR 0.77-0.90 and 0.88 IQR 0.79-0.91). The peak cap stresses obtained with both reconstruction methods showed a high correlation with respect to the ground truth, r(2) = 0.91 and r(2) = 0.95, respectively. For high stress plaques, the peak cap stress difference with respect to the ground truth significantly improved for the NC reconstruction based plaque specific features (6 %) compared to the reconstruction group averaged based (16 %). CONCLUSIONS: In conclusion, good geometry and stress agreement was observed between the ground truth NC geometry and the reconstructed geometries. Although group averaged rNCt estimation seemed to be sufficient for the NC reconstruction and stress calculations, including plaque specific data further improved stress predictions, especially for higher stresses.


Asunto(s)
Vasos Coronarios/patología , Análisis de Elementos Finitos , Placa Aterosclerótica/patología , Estrés Mecánico , Vasos Coronarios/fisiopatología , Modelos Biológicos , Necrosis , Placa Aterosclerótica/fisiopatología
13.
Biomed Eng Online ; 15(1): 91, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27495804

RESUMEN

BACKGROUND: Coronary hemodynamics and physiology specific for bifurcation lesions was not well understood. To investigate the influence of the bifurcation angle on the intracoronary hemodynamics of side branch (SB) lesions computational fluid dynamics simulations were performed. METHODS: A parametric model representing a left anterior descending-first diagonal coronary bifurcation lesion was created according to the literature. Diameters obeyed fractal branching laws. Proximal and distal main branch (DMB) stenoses were both set at 60 %. We varied the distal bifurcation angles (40°, 55°, and 70°), the flow splits to the DMB and SB (55 %:45 %, 65 %:35 %, and 75 %:25 %), and the SB stenoses (40, 60, and 80 %), resulting in 27 simulations. Fractional flow reserve, defined as the ratio between the mean distal stenosis and mean aortic pressure during maximal hyperemia, was calculated for the DMB and SB (FFRSB) for all simulations. RESULTS: The largest differences in FFRSB comparing the largest and smallest bifurcation angles were 0.02 (in cases with 40 % SB stenosis, irrespective of the assumed flow split) and 0.05 (in cases with 60 % SB stenosis, flow split 55 %:45 %). When the SB stenosis was 80 %, the difference in FFRSB between the largest and smallest bifurcation angle was 0.33 (flow split 55 %:45 %). By describing the ΔPSB-QSB relationship using a quadratic curve for cases with 80 % SB stenosis, we found that the curve was steeper (i.e. higher flow resistance) when bifurcation angle increases (ΔP = 0.451*Q + 0.010*Q (2) and ΔP = 0.687*Q + 0.017*Q (2) for 40° and 70° bifurcation angle, respectively). Our analyses revealed complex hemodynamics in all cases with evident counter-rotating helical flow structures. Larger bifurcation angles resulted in more pronounced helical flow structures (i.e. higher helicity intensity), when 60 or 80 % SB stenoses were present. A good correlation (R(2) = 0.80) between the SB pressure drop and helicity intensity was also found. CONCLUSIONS: Our analyses showed that, in bifurcation lesions with 60 % MB stenosis and 80 % SB stenosis, SB pressure drop is higher for larger bifurcation angles suggesting higher flow resistance (i.e. curves describing the ΔPSB-QSB relationship being steeper). When the SB stenosis is mild (40 %) or moderate (60 %), SB resistance is minimally influenced by the bifurcation angle, with differences not being clinically meaningful. Our findings also highlighted the complex interplay between anatomy, pressure drops, and blood flow helicity in bifurcations.


Asunto(s)
Estenosis Coronaria/patología , Estenosis Coronaria/fisiopatología , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Reserva del Flujo Fraccional Miocárdico , Modelos Cardiovasculares , Presión Sanguínea , Hemodinámica , Humanos , Hidrodinámica
14.
Stroke ; 46(8): 2124-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26081843

RESUMEN

BACKGROUND AND PURPOSE: Two approaches to target plaque vulnerability-a histopathologic classification scheme and a biomechanical analysis-were compared and the implications for noninvasive risk stratification of carotid plaques using magnetic resonance imaging were assessed. METHODS: Seventy-five histological plaque cross sections were obtained from carotid endarterectomy specimens from 34 patients (>70% stenosis) and subjected to both a Virmani histopathologic classification (thin fibrous cap atheroma with <0.2-mm cap thickness, presumed vulnerable) and a peak cap stress computation (<140 kPa: presumed stable; >300 kPa: presumed vulnerable). To demonstrate the implications for noninvasive plaque assessment, numeric simulations of a typical carotid magnetic resonance imaging protocol were performed (0.62×0.62 mm(2) in-plane acquired voxel size) and used to obtain the magnetic resonance imaging-based peak cap stress. RESULTS: Peak cap stress was generally associated with histological classification. However, only 16 of 25 plaque cross sections could be labeled as high-risk (peak cap stress>300 kPa and classified as a thin fibrous cap atheroma). Twenty-eight of 50 plaque cross sections could be labeled as low-risk (a peak cap stress<140 kPa and not a thin fibrous cap atheroma), leading to a κ=0.39. 31 plaques (41%) had a disagreement between both classifications. Because of the limited magnetic resonance imaging voxel size with regard to cap thickness, a noninvasive identification of only a group of low-risk, thick-cap plaques was reliable. CONCLUSIONS: Instead of trying to target only vulnerable plaques, a more reliable noninvasive identification of a select group of stable plaques with a thick cap and low stress might be a more fruitful approach to start reducing surgical interventions on carotid plaques.


Asunto(s)
Estenosis Carotídea/clasificación , Estenosis Carotídea/diagnóstico , Imagen por Resonancia Magnética/clasificación , Estrés Mecánico , Estenosis Carotídea/cirugía , Endarterectomía Carotidea , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
15.
Radiology ; 274(3): 674-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25322342

RESUMEN

PURPOSE: To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography. MATERIALS AND METHODS: The institutional review board provided a waiver for this retrospective study. From coronary CT angiography data in 106 patients, FFR was computed at a local workstation by using a computational fluid dynamics algorithm. Invasive FFR measurement was performed in 189 vessels (80 of which had an FFR ≤ 0.80); these measurements were regarded as the reference standard. The diagnostic characteristics of coronary CT angiography-derived computational FFR, coronary CT angiography, and quantitative coronary angiography were evaluated against those of invasively measured FFR by using C statistics. Sensitivity and specificity were compared by using a two-sided McNemar test. RESULTS: For computational FFR, sensitivity was 87.5% (95% confidence interval [CI]: 78.2%, 93.8%), specificity was 65.1% (95% CI: 55.4%, 74.0%), and accuracy was 74.6% (95% CI: 68.4%, 80.8%), as compared with the finding of lumen stenosis of 50% or greater at coronary CT angiography, for which sensitivity was 81.3% (95% CI: 71.0%, 89.1%), specificity was 37.6% (95% CI: 28.5%, 47.4%), and accuracy was 56.1% (95% CI: 49.0%, 63.2%). C statistics revealed a larger area under the receiver operating characteristic curve (AUC) for computational FFR (AUC, 0.83) than for coronary CT angiography (AUC, 0.64). For vessels with intermediate (25%-69%) stenosis, the sensitivity of computational FFR was 87.3% (95% CI: 76.5%, 94.3%) and the specificity was 59.3% (95% CI: 47.8%, 70.1%). CONCLUSION: With use of a reduced-order algorithm, computation of the FFR from coronary CT angiography data can be performed locally, at a regular workstation. The diagnostic accuracy of coronary CT angiography-derived computational FFR for the detection of functionally important coronary artery disease (CAD) was good and was incremental to that of coronary CT angiography within a population with a high prevalence of CAD.


Asunto(s)
Algoritmos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Reserva del Flujo Fraccional Miocárdico , Tomografía Computarizada por Rayos X , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
17.
Magn Reson Med ; 72(1): 188-201, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23943090

RESUMEN

PURPOSE: Atherosclerotic carotid plaques can be quantified in vivo by MRI. However, the accuracy in segmentation and quantification of components such as the thin fibrous cap (FC) and lipid-rich necrotic core (LRNC) remains unknown due to the lack of a submillimeter scale ground truth. METHODS: A novel approach was taken by numerically simulating in vivo carotid MRI providing a ground truth comparison. Upon evaluation of a simulated clinical protocol, MR readers segmented simulated images of cross-sectional plaque geometries derived from histological data of 12 patients. RESULTS: MR readers showed high correlation (R) and intraclass correlation (ICC) in measuring the luminal area (R = 0.996, ICC = 0.99), vessel wall area (R = 0.96, ICC = 0.94) and LRNC area (R = 0.95, ICC = 0.94). LRNC area was underestimated (mean error, -24%). Minimum FC thickness showed a mediocre correlation and intraclass correlation (R = 0.71, ICC = 0.69). CONCLUSION: Current clinical MRI can quantify carotid plaques but shows limitations for thin FC thickness quantification. These limitations could influence the reliability of carotid MRI for assessing plaque rupture risk associated with FC thickness. Overall, MRI simulations provide a feasible methodology for assessing segmentation and quantification accuracy, as well as for improving scan protocol design.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Placa Aterosclerótica/diagnóstico , Simulación por Computador , Medios de Contraste , Humanos , Lípidos/análisis , Necrosis , Compuestos Organometálicos , Relación Señal-Ruido
18.
NMR Biomed ; 27(7): 826-34, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817676

RESUMEN

Wall shear stress (WSS) is involved in many pathophysiological processes related to cardiovascular diseases, and knowledge of WSS may provide vital information on disease progression. WSS is generally quantified with computational fluid dynamics (CFD), but can also be calculated using phase contrast MRI (PC-MRI) measurements. In this study, our objectives were to calculate WSS on the entire luminal surface of human carotid arteries using PC-MRI velocities (WSSMRI ) and to compare it with WSS based on CFD (WSSCFD ). Six healthy volunteers were scanned with a 3 T MRI scanner. WSSCFD was calculated using a generalized flow waveform with a mean flow equal to the mean measured flow. WSSMRI was calculated by estimating the velocity gradient along the inward normal of each mesh node on the luminal surface. Furthermore, WSS was calculated for a down-sampled CFD velocity field mimicking the MRI resolution (WSSCFDlowres ). To ensure minimum temporal variation, WSS was analyzed only at diastole. The patterns of WSSCFD and WSSMRI were compared by quantifying the overlap between low, medium and high WSS tertiles. Finally, WSS directions were compared by calculating the angles between the WSSCFD and WSSMRI vectors. WSSMRI magnitude was found to be lower than WSSCFD (0.62 ± 0.18 Pa versus 0.88 ± 0.30 Pa, p < 0.01) but closer to WSSCFDlowres (0.56 ± 0.18 Pa, p < 0.01). WSSMRI patterns matched well with those of WSSCFD. The overlap area was 68.7 ± 4.4% in low and 69.0 ± 8.9% in high WSS tertiles. The angles between WSSMRI and WSSCFD vectors were small in the high WSS tertiles (20.3 ± 8.2°), but larger in the low WSS tertiles (65.6 ± 17.4°). In conclusion, although WSSMRI magnitude was lower than WSSCFD , the spatial WSS patterns at diastole, which are more relevant to the vascular biology, were similar. PC-MRI-based WSS has potential to be used in the clinic to indicate regions of low and high WSS and the direction of WSS, especially in regions of high WSS.


Asunto(s)
Arterias Carótidas/patología , Arterias Carótidas/fisiopatología , Hidrodinámica , Imagen por Resonancia Cinemagnética/métodos , Estrés Mecánico , Adulto , Velocidad del Flujo Sanguíneo , Circulación Coronaria , Diástole , Salud , Humanos
19.
Catheter Cardiovasc Interv ; 84(3): 445-52, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24664529

RESUMEN

AIMS: To evaluate the distribution of atherosclerosis at bifurcations with computed tomography coronary angiography (CTCA) and propose a novel CT-Medina classification for bifurcation lesions. METHODS: In 26 patients (age 55 ± 10 years, 81% male) imaged with CTCA, 39 bifurcations were studied. The bifurcations analysis included the proximal main vessel, the distal main vessel and the side branch (SB). Plaque contours were manually traced on CTCA; the lumen, vessel and plaque area were measured, as well as plaque burden (%). The carina cross-sections were divided into four equal parts according to the expected wall shear stress (WSS) to assess circumferential plaque distribution. All the bifurcation lesions were classified using the Medina classification and a novel CT-Medina classification combining lumen narrowing and plaque burden ≥70%. RESULTS: Presence of severe plaque (plaque burden ≥70%) by CTCA was demonstrated in 12.8% (5/39) of the proximal segments, 15.4% (6/39) of the distal segments and 7.7% (3/39) of the SB segments. The thickest plaque was located more often in low WSS parts of the carina cross-sections, whereas the flow divider was rarely affected. Although in the majority of bifurcations plaque was present, based on the Medina classification 92% of the assessed bifurcations were identified as 0,0,0. Characterization of bifurcation lesions using the new CT-Medina classification provided additional information in seven cases (18%) compared to the Medina classification CONCLUSION: Atherosclerotic plaque is widely present in all bifurcation segments, even in the absence of coronary lumen stenosis. A CT-Medina classification combining lumen and plaque parameters is more informative than angiographic classification of bifurcation lesions and could potentially facilitate the decision-making on the treatment of these lesions.


Asunto(s)
Síndrome Coronario Agudo/clasificación , Angiografía Coronaria/métodos , Vasos Coronarios , Tomografía Computarizada Multidetector/métodos , Síndrome Coronario Agudo/diagnóstico por imagen , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos
20.
Vasc Med ; 19(2): 94-102, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24829311

RESUMEN

Previously, we created an experimental murine model for the induction of vulnerable plaque (VP). Although this murine model offers the opportunity to study the different molecular biological pathways that regulate plaque destabilization, the size of the animals severely limits the use of the model for in vivo diagnostics and percutaneous interventions. This study aimed to create a VP model in the rabbit, based on the murine model, to aid the assessment and development of novel diagnostic and interventional tools. New Zealand white rabbits were fed on a 2% cholesterol diet. After 1 week, a shear stress-altering device was implanted around the right carotid artery. Twelve weeks after cast placement, the carotid artery was isolated and processed for (immuno-)histological analysis to evaluate the presence of a VP phenotype. Atherosclerotic plaques with high lipid and macrophage content, low vascular smooth muscle cell content and intimal neovascularization were located upstream and downstream of the cast. The plaques lacked a significant necrotic core. In conclusion, we were able to create atherosclerotic plaques with a phenotype beyond that of a fatty streak, with a high percentage of lipids and macrophages, a thick cap with some vascular smooth muscle cells and neovascularization. However, as there was only a small necrotic core, the overall phenotype seems less vulnerable as compared to the thin fibrous cap atheroma in patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA