Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3963-3973, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305745

RESUMEN

One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.

2.
Chemistry ; 29(37): e202300572, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37021746

RESUMEN

Tetrathiafulvalene is among the best known building blocks in molecular electronics due to its outstanding electron-donating and redox properties. Among its derivatives, dithiophene-tetrathiafulvalene (DT-TTF) has attracted considerable interest in organic electronics, owing to its high field-effect mobility. Herein, we report the direct C-H arylation of DT-TTF to synthesise mono- and tetraarylated derivatives functionalised with electron-withdrawing and electron-donating groups in order to evaluate their influence on the electronic properties by cyclic voltammetry, UV-vis spectroscopy and theoretical calculations. Self-assembly of the DT-TTF-tetrabenzoic acid derivative was studied by using scanning tunnelling microscopy (STM) which revealed the formation of ordered, densely packed 2D hydrogen-bonded networks at the graphite/liquid interface. The tetrabenzoic acid derivative can attain a planar geometry on the graphite surface due to van der Waals interactions with the surface and H-bonding with neighbouring molecules. This study demonstrates a simple method for the synthesis of arylated DT-TTF derivatives towards the design and construction of novel π-extended electroactive frameworks.

3.
Chemistry ; 29(37): e202301588, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37259897

RESUMEN

Invited for the cover of this issue is the group of Manuel Souto and co-workers at the University of Aveiro and CICECO-Aveiro Institute of Materials. The image depicts the direct C-H arylation of dithiophene-tetrathiafulvalene (DT-TTF) and the self-assembly of DT-TTF-tetrabenzoic acid studied by using scanning tunnelling microscopy. Read the full text of the article at 10.1002/chem.202300572.

4.
J Chem Phys ; 159(8)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37615393

RESUMEN

Multiconfigurational methods (CASSCF and CASPT2) were employed to gain a new understanding of the mechanism of the gas-phase phototautomerization of 2-pyridone/2-hydroxypyridine. Potential energy curves and crossing points of the low-lying excited states were analyzed. The results show that the tautomerization only occurs from 2-pyridone to 2-hydroxypyridine after electronic excitation to the S1 (ππ*) state. From this state, the system would be able to reach a conical intersection between S1 and the dissociative S2 (πσ*) due to vibrational effects. Then, it can evolve to the hydroxy form in its ground state by reaching an intersection seam between the S0 and the πσ* states. For this to happen, a roaming process responsible for the hydrogen atom migration would be required; otherwise, the system would revert to the 2-pyridone tautomer. The unfeasibility of the reverse process after optical excitation from the lactim to the lactam form is explained by the great amount of energy needed to reach the conical intersection between the ππ* and πσ* states. These findings would provide new insights into the understanding of the photophysics and photochemistry of a primordial heterocycle, considered a prebiotic model known to be found in interstellar clouds.

5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108586

RESUMEN

The deprotonation of an organic substrate is a common preactivation step for the enzymatic cofactorless addition of O2 to this substrate, as it promotes charge-transfer between the two partners, inducing intersystem crossing between the triplet and singlet states involved in the process. Nevertheless, the spin-forbidden addition of O2 to uncharged ligands has also been observed in the laboratory, and the detailed mechanism of how the system circumvents the spin-forbiddenness of the reaction is still unknown. One of these examples is the cofactorless peroxidation of 2-methyl-3,4-dihydro-1-naphthol, which will be studied computationally using single and multi-reference electronic structure calculations. Our results show that the preferred mechanism is that in which O2 picks a proton from the substrate in the triplet state, and subsequently hops to the singlet state in which the product is stable. For this reaction, the formation of the radical pair is associated with a higher barrier than that associated with the intersystem crossing, even though the absence of the negative charge leads to relatively small values of the spin-orbit coupling.


Asunto(s)
Tetralonas , Descarboxilación , Oxígeno/química
6.
Phys Chem Chem Phys ; 23(8): 4777-4783, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33599227

RESUMEN

Some of the most promising materials for application in molecular electronics and spintronics are based on diradical chains. Herein, the proposed relation between increasing conductance with length and diradical character is revisited using ab initio methods that account for the static electron correlation effects. Electron transmission was previously obtained from restricted single determinant wavefuntions or tight-binding approximations, which are unable to account for static correlation. Broken Symmetry Unrestricted Kohn-Sham Density Functional Theory (BS-UKS-DFT) in combination with electron transport analysis based on electron deformation orbitals (EDOs) reflects an exponential decay of the electrical conductance with length. Also, other important effects such as quantum interference are correctly accounted for, leading to a decrease of the conductance as the diradical character increases. As a proof-of-concept, the electrical conductance obtained from BS-UKS-DFT and CASSCF(2,2) wavefunctions were compared in diradical graphene strips in the frame of the pseudo-π approach, obtaining very similar results.

7.
Chemistry ; 26(68): 16138-16143, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32893901

RESUMEN

The Clar Goblet, the first radical bowtie nanographene proposed by Erich Clar nearly 50 years ago, was recently synthesized. Bowtie nanographenes present quasi-degenerate magnetic ground states, which make them so elusive as unique. A thorough analysis is presented of the spin-state energetics of Clar Goblet and bowtie nanographenes by a battery of existing and novel ab initio procedures ranging from density functional theory to complete active space Hamiltonians. With this, it was proven that π radicals of bowtie nanographenes sit on BP (Benzo[cd]Pyrene) moieties driven by their local aromaticity, a purely chemical concept, which confers global stability to the whole structure. Besides, a novel Pauli energy densities analysis provided a visual intuitive explanation for this preference. These findings allow envisioning that analogous bowtie nanographenes with arbitrary polyradical character are not only feasible at the molecular scale but will share Clar Goblet's peculiar properties.

8.
Chemistry ; 26(72): 17342-17349, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-32696530

RESUMEN

Several theoretical studies have proposed strategies to generate helical molecular orbitals (Hel-MOs) in [n]cumulenes and oligoynes. While chiral even-[n] cumulenes feature Hel-MOs, odd-[n] cumulenes may also present them if the terminal groups lie in different planes. However, the proposed systems have been either experimentally unfeasible or resulted in opposite pseudo-degenerated Hel-MOs. We hereby demonstrate the introduction of a remarkable energy difference between helical orbitals of opposite twist by fixing the torsion angle between the terminal groups in butadiyne fragments. To experimentally lock the conformation of the terminal groups, we designed and synthesized cyclic architectures by combining acetylenes with chiral spirobifluorenes. The high stability of these systems with distinct helical orbitals allowed their isolation and full characterization. In our view, these results constitute a step further in the development of real systems presenting helical molecular orbitals.


Asunto(s)
Alquinos , Polienos , Alquinos/química , Modelos Moleculares , Conformación Molecular , Polienos/química
9.
Nano Lett ; 19(10): 7394-7399, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525054

RESUMEN

An extraordinary new family of molecular junctions, inaccurately referred to as "anti-Ohmic" wires in the recent literature, has been proposed based on theoretical predictions. The unusual electron transport observed for these systems, characterized by a reversed exponential decay of their electrical conductance, might revolutionize the design of molecular electronic devices. This behavior, which has been associated with intrinsic diradical nature, is reexamined in this work. Since the diradical character arises from a near-degeneracy of the frontier orbitals, the employment of a multireference approach is mandatory. CASSCF calculations on a set of nanowires based on polycyclic aromatic hydrocarbons (PAHs) demonstrate that, in the frame of an appropriate multireference treatment, the ground state of these systems shows the expected exponential decay of the conductance. Interestingly, these calculations do evidence a reversed exponential decay of the conductance, although now in several excited states. Similar results have been obtained for other recently proposed candidates to "anti-Ohmic" wires. These findings open new horizons for possible applications in molecular electronics of these promising systems.

10.
Sensors (Basel) ; 19(8)2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31010075

RESUMEN

In this work, the electronic and optical properties of hybrid boron-nitrogen-carbon structures (h-BNCs) with embedded graphene nanodisks are investigated. Their molecular affinity is explored using pyridine as model system and comparing the results with the corresponding isolated graphene nanodisks. Time-dependent density functional theory (TDDFT) analysis of the electronic excited states was performed in the complexes in order to characterize possible surface and charge transfer resonances in the UV region. Static and dynamic (hyper)polarizabilities were calculated with coupled-perturbed Kohn-Sham theory (CPKS) and the linear and nonlinear optical responses of the complexes were analyzed in detail using laser excitation wavelengths available for (Hyper)Raman experiments and near-to-resonance excitation wavelengths. Enhancement factors around 103 and 108 were found for the polarizability and first order hyperpolarizability, respectively. The quantum chemical simulations performed in this work point out that nanographenes embedded within hybrid h-BNC structures may serve as good platforms for enhancing the (Hyper)Raman activity of organic molecules immobilized on their surfaces and for being employed as substrates in surface enhanced (Hyper)Raman scattering (SERS and SEHRS). Besides the better selectivity and improved signal-to-noise ratio of pristine graphene with respect to metallic surfaces, the confinement of the optical response in these hybrid h-BNC systems leads to strong localized surface resonances in the UV region. Matching these resonances with laser excitation wavelengths would solve the problem of the small enhancement factors reported in Raman experiments using pristine graphene. This may be achieved by tuning the size/shape of the embedded nanographene structure.

11.
Chem Sci ; 14(38): 10547-10560, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799987

RESUMEN

Protein fold adaptation to novel enzymatic reactions is a fundamental evolutionary process. Cofactor-independent oxygenases degrading N-heteroaromatic substrates belong to the α/ß-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. Here, we have integrated crystallographic analyses under normoxic and hyperoxic conditions with molecular dynamics and quantum mechanical calculations to investigate its prototypic 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) member. O2 localization to the "oxyanion hole", where catalysis occurs, is an unfavorable event and the direct competition between dioxygen and water for this site is modulated by the "nucleophilic elbow" residue. A hydrophobic pocket that overlaps with the organic substrate binding site can act as a proximal dioxygen reservoir. Freeze-trap pressurization allowed the structure of the ternary complex with a substrate analogue and O2 bound at the oxyanion hole to be determined. Theoretical calculations reveal that O2 orientation is coupled to the charge of the bound organic ligand. When 1-H-3-hydroxy-4-oxoquinaldine is uncharged, O2 binds with its molecular axis along the ligand's C2-C4 direction in full agreement with the crystal structure. Substrate activation triggered by deprotonation of its 3-OH group by the His-Asp dyad, rotates O2 by approximately 60°. This geometry maximizes the charge transfer between the substrate and O2, thus weakening the double bond of the latter. Electron density transfer to the O2(π*) orbital promotes the formation of the peroxide intermediate via intersystem crossing that is rate-determining. Our work provides a detailed picture of how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish metal-independent oxygenation.

12.
Nanoscale Adv ; 1(5): 1901-1913, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134239

RESUMEN

Hitherto, only molecular wires with a regular ohmic behavior in which the electric conductance decreases with the wire length have been synthesized. Implementation of molecular conductors with reversed conductance/length trend (anti-ohmic) might revolutionize the field of molecular electronics, allowing the development of electronic devices with extraordinary properties. It is for this reason that, recently, theoretical efforts have been focused on this topic and different structures have been proposed to show reversed conductance/length behavior on the basis of density functional theory non-equilibrium Green function approach (DFT-NEGF) and topological models. From the previous works, it can be stated that an anti-ohmic molecular wire must display a very small HOMO-LUMO gap and a reversed bond alternation pattern in the case of polyenes and related conjugated systems. In this work, the pursuit of a mechanism by which the anti-ohmic electron transport may arise was carried out by studying the paradigmatic anti-ohmic p-xylylene chain (pX2) at the DFT level in combination with topological models. It has been found that the electron transport in the anti-ohmic regime is favored by a long-range superexchange mechanism, which, contrary to what is expected, is reinforced by the increase in the length of the chain. Moreover, strong links between anti-ohmic character in molecular wires and one-dimensional topological insulator models have been established. Due to the small HOMO-LUMO gap predicted at DFT level, the anti-ohmic character has been put to the proof using a multireference scenario. Preliminary results point out to the presence of different ohmic and anti-ohmic electronic states. In the particular case of pX2 the anti-ohmic states do not correspond to the ground state. These findings require a reconsideration of previous studies on the reversed conductance/length behavior using single reference methodologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA