Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Ultrasound Med ; 43(1): 137-150, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37873733

RESUMEN

OBJECTIVES: Quantitative ultrasound (QUS) is a noninvasive imaging technique that can be used for assessing response to anticancer treatment. In the present study, tumor cell death response to the ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment was monitored in vivo using QUS. METHODS: Human breast cancer cell lines (MDA-MB-231) were grown in mice and were treated with HT (10, 30, 50, and 60 minutes) alone, or in combination with USMB. Treatment effects were examined using QUS with a center frequency of 25 MHz (bandwidth range: 16 to 32 MHz). Backscattered radiofrequency (RF) data were acquired from tumors subjected to treatment. Ultrasound parameters such as average acoustic concentration (AAC) and average scatterer diameter (ASD), were estimated 24 hours prior and posttreatment. Additionally, texture features: contrast (CON), correlation (COR), energy (ENE), and homogeneity (HOM) were extracted from QUS parametric maps. All estimated parameters were compared with histopathological findings. RESULTS: The findings of our study demonstrated a significant increase in QUS parameters in both treatment conditions: HT alone (starting from 30 minutes of heat exposure) and combined treatment of HT plus USMB finally reaching a maximum at 50 minutes of heat exposure. Increase in AAC for 50 minutes HT alone and USMB +50 minutes was found to be 5.19 ± 0.417% and 5.91 ± 1.11%, respectively, compared to the control group with AAC value of 1.00 ± 0.44%. Furthermore, between the treatment groups, ΔASD-ENE values for USMB +30 minutes HT significantly reduced, depicting 0.00062 ± 0.00096% compared to 30 minutes HT only group, showing 0.0058 ± 0.0013%. Further, results obtained from the histological analysis indicated greater cell death and reduced nucleus size in both HT alone and HT combined with USMB. CONCLUSION: The texture-based QUS parameters indicated a correlation with microstructural changes obtained from histological data. This work demonstrated the use of QUS to detect HT treatment effects in breast cancer tumors in vivo.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Neoplasias Mamarias Animales , Humanos , Animales , Ratones , Femenino , Microburbujas , Ultrasonografía/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Terapia Combinada
2.
Prostate ; 82(6): 695-705, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167141

RESUMEN

BACKGROUND: Prostate cancer (PCa) models in mice and rats are limited by their size and lack of a clearly delineated or easily accessible prostate gland. The canine PCa model is currently the only large animal model which can be used to test new preclinical interventions but is costly and availability is sparse. As an alternative, we developed an orthotopic human prostate tumor model in an immunosuppressed New Zealand White rabbit. Rabbits are phylogenetically closer to humans, their prostate gland is anatomically similar, and its size allows for clinically-relevant testing of interventions. METHODS: Rabbits were immunosuppressed via injection of cyclosporine. Human PC3pipGFP PCa cells were injected into the prostate via either (a) laparotomy or (b) transabdominal ultrasound (US) guided injection. Tumor growth was monitored using US and magnetic resonance imaging (MRI). Contrast-enhanced ultrasound (CEUS) imaging using nanobubbles and Lumason microbubbles was also performed to examine imaging features and determine the optimal contrast dose required for enhanced visualization of the tumor. Ex vivo fluorescence imaging, histopathology, and immunohistochemistry analyses of the collected tissues were performed to validate tumor morphology and prostate-specific membrane antigen (PSMA) expression. RESULTS: Immunosuppression and tumor growth were, in general, well-tolerated by the rabbits. Fourteen out of 20 rabbits, with an average age of 8 months, successfully grew detectable tumors from Day 14 onwards after cell injection. The tumor growth rate was 39 ± 25 mm2 per week. CEUS and MRI of tumors appear hypoechoic and T2 hypointense, respectively, relative to normal prostate tissue. Minimally invasive US-guided tumor cell injection proved to be a better method compared to laparotomy due to the shorter recovery time required for the rabbits following injection. Among the rabbits that grew tumors, seven had tumors both inside and outside the prostate, three had tumors only inside the prostate, and four had tumors exclusively outside of the prostate. All tumors expressed the PSMA receptor. CONCLUSIONS: We have established, for the first time, an orthotopic PCa rabbit model via percutaneous US-guided tumor cell inoculation. This animal model is an attractive, clinically relevant intermediate step to assess preclinical diagnostic and therapeutic compounds.


Asunto(s)
Neoplasias de la Próstata , Animales , Castración , Modelos Animales de Enfermedad , Perros , Humanos , Masculino , Ratones , Microburbujas , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Conejos , Ratas , Ultrasonografía/métodos
3.
J Ultrasound Med ; 41(11): 2659-2671, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35142383

RESUMEN

OBJECTIVE: The objective of the present study was to investigate the treatment effects of ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) on breast tumor vasculature. METHODS: Tumor-bearing mice with breast cancer xenografts (MDA-MB-231), were exposed to different treatment conditions consisting of control (no treatment), USMB alone, HT alone, USMB with HT exposures of 10 and 50 minutes. Quantitative 3D Doppler ultrasound and photoacoustic imaging were used to detect tumor blood flow and oxygen saturation, respectively. In addition, histopathological analysis including TUNEL staining for cell death, and CD31 staining for the vessel count, was performed to complement the results of power Doppler and photoacoustic imaging. RESULTS: Results demonstrated a decrease in tumor blood flow as well as oxygenation level following 50 minutes HT treatment either alone or combined with USMB. In contrast, 10 minutes HT alone or combined with USMB had minimal effects on blood flow and tumor oxygenation level. Treatment with HT for 50 minutes caused drops in tumor oxygenation, which were not evident with USMB treatment alone. Additionally, results revealed an increase in cell death after 10 minutes HT with or without USMB and a decrease in vessel count compared to control. Unlike previous studies which demonstrated synergistic treatment effects combining USMB with other modalities such as radiation or chemotherapy, USMB and HT effects were not synergistic in the present study. CONCLUSION: The results here demonstrated HT and USMB both alone or together resulted in a significant reduction in tumor blood flow, tumor oxygenation, and vessel count with observed increases in cell death response.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Ratones , Animales , Femenino , Microburbujas , Xenoinjertos , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Ultrasonografía , Línea Celular Tumoral
4.
BMC Cancer ; 21(1): 991, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479484

RESUMEN

BACKGROUND: The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. RESULTS: The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. CONCLUSION: Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


Asunto(s)
Hipertermia Inducida/métodos , Neoplasias de la Próstata/terapia , Ultrasonido/métodos , Animales , Apoptosis , Proliferación Celular , Terapia Combinada , Humanos , Masculino , Ratones , Ratones SCID , Microburbujas , Neoplasias de la Próstata/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Ultrasound Med ; 39(12): 2415-2425, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32525248

RESUMEN

OBJECTIVES: To investigate whether timing and sequencing of ultrasound-stimulated microbubbles (USMBs) and external beam radiotherapy (XRT) affect the treatment response in a preclinical prostate cancer model. METHODS: Prostate cancer xenografts were treated with ultrasound-stimulated lipid microspheres before and after 8-Gy XRT. Treatments were separated by 0, 3, 6, 12, and 24 hours, with 5 tumors per group. Tumor effects were evaluated by microvessel density (measured by CD31 staining), cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling and hematoxylin-eosin staining), and hypoxia (carbonic anhydrase 9 staining). RESULTS: Administering USMBs 6 hours before XRT showed the maximum treatment effect using all 3 assays. At this time, the mean cell death index ± SD was 36% ± 10%, compared with 19% ± 4% for no separation between USMB treatment and XRT; the microvessel density was 9 ± 3 counts per field (19 ± 5 without separation); and the percentage of hypoxic cells was 10% ± 5% (21% ± 4%). The observed treatment effect was greater with USMBs before XRT than when administering XRT first, but these differences were not statistically significant. CONCLUSIONS: The maximum tumor effect was observed with USMBs delivered 6 hours before XRT. The sequencing of treatment did not have a significant effect on the tumor response.


Asunto(s)
Microburbujas , Neoplasias de la Próstata , Terapia Combinada , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Ultrasonografía
6.
Proc Natl Acad Sci U S A ; 109(30): E2033-41, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778441

RESUMEN

We have discovered that ultrasound-mediated microbubble vascular disruption can enhance tumor responses to radiation in vivo. We demonstrate this effect using a human PC3 prostate cancer xenograft model. Results indicate a synergistic effect in vivo with combined single treatments of ultrasound-stimulated microbubble vascular perturbation and radiation inducing an over 10-fold greater cell kill with combined treatments. We further demonstrate with experiments in vivo that induction of ceramide-related endothelial cell apoptosis, leading to vascular disruption, is a causative mechanism. In vivo experiments with ultrasound and bubbles permit radiation doses to be decreased significantly for comparable effect. We envisage this unique combined ultrasound-based vascular perturbation and radiation treatment method being used to enhance the effects of radiation in a tumor, leading to greater tumor eradication.


Asunto(s)
Estimulación Acústica/métodos , Apoptosis/efectos de la radiación , Endotelio Vascular/citología , Microburbujas/uso terapéutico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación/fisiología , Análisis de Varianza , Animales , Línea Celular Tumoral , Ceramidas/metabolismo , Terapia Combinada/métodos , Relación Dosis-Respuesta en la Radiación , Endotelio Vascular/efectos de la radiación , Técnicas Histológicas , Humanos , Lisofosfolípidos/metabolismo , Masculino , Ratones , Ratones SCID , Microscopía Fluorescente , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Trasplante Heterólogo , Ultrasonografía
7.
Microvasc Res ; 92: 1-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24215790

RESUMEN

BACKGROUND: Endothelial cells are suggested regulators of tumor response to radiation. Anti-vascular targeting agents can enhance tumor response by targeting endothelial cells. Here, we have conducted experiments in vitro to discern the effects of radiation combined with the anti-angiogenic Sunitinib on endothelial (HUVEC) and tumor (MDA-MB-231) cells, and further compared findings to results obtained in vivo. METHODS: In vitro and in vivo treatments consisted of single dose radiation therapy of 2, 4, 8 or 16 Gy administered alone or in combination with bFGF or Sunitinib. In vitro, in situ end labeling (ISEL) was used to assess 24-hour apoptotic cell death, and clonogenic assays were used to assess long-term response. In vivo MDA-MB-231 tumors were grown in CB-17 SCID mice. The vascular marker CD31 was used to assess 24-hour acute response while tumor clonogenic assays were used to assess long-term tumor cell viability following treatments. RESULTS: Using in vitro studies, we observed an enhanced endothelial cell response to radiation doses of 8 and 16 Gy when compared to tumor cells. Administering Sunitinib alone significantly increased HUVEC cell death, while having modest additive effects when combined with radiation. Sunitinib also increased tumor cell death when combined with 8 and 16 Gy radiation doses. In comparison, we found that the clonogenic response of in vivo treated tumor cells more closely resembled that of in vitro treated endothelial cells than in vitro treated tumor cells. CONCLUSION: Our results indicate that the endothelium is an important regulator of tumor response to radiotherapy, and that Sunitinib can enhance tumor radiosensitivity. To the best of our knowledge, this is the first time that Sunitinib is investigated in combination with radiotherapy on the MDA-MB-231 breast cancer cell line.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Células Endoteliales/efectos de los fármacos , Células Endoteliales/efectos de la radiación , Indoles/farmacología , Pirroles/farmacología , Tolerancia a Radiación/efectos de los fármacos , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Células Endoteliales/patología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones SCID , Sunitinib , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Angiogenesis ; 16(2): 443-54, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23314761

RESUMEN

PURPOSE: Large doses of radiation (8-20 Gy) preferentially target tumor vasculature. This vascular response is suggested to regulate tumor response to radiotherapy. Here, we investigate the relative contributions of direct cell killing by radiation versus tumor cell death due to radiation effects on the vasculature. We also examine Sunitinib's mechanism of action as a tumor radiosensitizer. EXPERIMENTAL DESIGN: MDA-MB-231 xenografts were treated with radiation doses of 2-16 Gy alone, or in combination with bFGF (endothelial radio-protector) or Sunitinib as pharmacological modulators of the vasculature. Sunitinib was orally administered for 2 weeks at 30 mg/kg before radiotherapy; bFGF was intravenously injected 1 h prior to irradiation. Three-dimensional high-frequency power Doppler ultrasound was used to assess relative changes in tumor vasculature. Immunohistochemistry, clonogenic and tumor growth assays were used to quantify tumor response. RESULTS: Significant reductions in power Doppler signal of up to 50 % were observed for 8 and 16 Gy treatments, along with a dose-dependent increase in cell death. No significant change in power Doppler signal and minimal tumor cell death were noted for tumors treated with radiation and bFGF. Treatments where Sunitinib was combined with radiation demonstrated a significant increase in flow signal at doses equal or greater than 8 Gy. This was accompanied with a significant increase in cell death when compared to radiation or Sunitinib alone. CONCLUSION: We confirm that tumor response to high doses of radiation is regulated by its vasculature. We also posit that the response observed when radiation is combined with Sunitinib is linked to a vascular "normalization" effect.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Indoles/uso terapéutico , Neoplasias Experimentales/irrigación sanguínea , Pirroles/uso terapéutico , Ultrasonografía Doppler , Animales , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Ratones , Neoplasias Experimentales/radioterapia , Sunitinib
9.
Sci Rep ; 13(1): 4487, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934140

RESUMEN

High intensity focused ultrasound (HIFU) systems have been approved for therapeutic ultrasound delivery to cause tissue ablation or induced hyperthermia. Microbubble agents have also been used in combination with sonication exposures. These require temperature feedback and monitoring to prevent unstable cavitation and prevent excess tissue heating. Previous work has utilized lower power and pressure to oscillate microbubbles and transfer energy to endothelial cells in the absence of thermally induced damage that can radiosensitize tumors. This work investigated whether reduced acoustic power and pressure on a commercial available MR-integrated HIFU system could result in enhanced radiation-induced tumor response after exposure to ultrasound-stimulated microbubbles (USMB) therapy. A commercially available MR-integrated HIFU system was used with a hyperthermia system calibration provided by the manufacturer. The ultrasound transducer was calibrated to reach a peak negative pressure of - 750 kPa. Thirty male New Zealand white rabbits bearing human derived PC3 tumors were grouped to receive no treatment, 14 min of USMB, 8 Gy of radiation in a separate irradiation cabinet, or combined treatments. In vivo temperature changes were collected using MR thermometry at the tumor center and far-field muscle region. Tissues specimens were collected 24 h post radiation therapy. Tumor cell death was measured and compared to untreated controls through hematoxylin and eosin staining and immunohistochemical analysis. The desired peak negative pressure of - 750 kPa used for previous USMB occurred at approximately an input power of 5 W. Temperature changes were limited to under 4 °C in ten of twelve rabbits monitored. The median temperature in the far-field muscle region of the leg was 2.50 °C for groups receiving USMB alone or in combination with radiation. Finally, statistically significant tumor cell death was demonstrated using immunohistochemical analysis in the combined therapy group compared to untreated controls. A commercial MR-guided therapy HIFU system was able to effectively treat PC3 tumors in a rabbit model using USMB therapy in combination with radiation exposures. Future work could find the use of reduced power and pressure levels in a commercial MR-guided therapy system to mechanically stimulate microbubbles and damage endothelial cells without requiring high thermal doses to elicit an antitumor response.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias Inducidas por Radiación , Masculino , Humanos , Conejos , Animales , Microburbujas , Células Endoteliales , Temperatura , Imagen por Resonancia Magnética
10.
Technol Cancer Res Treat ; 22: 15330338231200993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37750232

RESUMEN

Objectives: Prior study has demonstrated the implementation of quantitative ultrasound (QUS) for determining the therapy response in breast tumour patients. Several QUS parameters quantified from the tumour region showed a significant correlation with the patient's clinical and pathological response. In this study, we aim to identify if there exists such a link between QUS parameters and changes in tumour morphology due to combined ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) using the breast xenograft model (MDA-MB-231). Method: Tumours grown in the hind leg of severe combined immuno-deficient mice were treated with permutations of USMB and HT. Ultrasound radiofrequency data were collected using a 25 MHz array transducer, from breast tumour-bearing mice prior and post-24-hour treatment. Result: Our result demonstrated an increase in the QUS parameters the mid-band fit and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be reflective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain. A significant decrease in QUS spectral parameters was observed at an HT duration of 60 minutes, which is possibly due to loss of nuclei by the majority of cells as confirmed using histology analysis. Morphological alterations within the tumour might have contributed to the decrease in backscatter parameters. Conclusion: The work here uses the QUS technique to assess the efficacy of cancer therapy and demonstrates that the changes in ultrasound backscatters mirrored changes in tissue morphology.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Animales , Ratones , Femenino , Microburbujas , Ultrasonografía/métodos , Muerte Celular , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia
11.
Technol Cancer Res Treat ; 21: 15330338221132925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36412102

RESUMEN

Objective: Several studies have focused on the use of ultrasound-stimulated microbubbles (USMB) to induce vascular damage in order to enhance tumor response to radiation. Methods: In this study, power Doppler imaging was used along with immunohistochemistry to investigate the effects of combining radiation therapy (XRT) and USMB using an ultrasound-guided focused ultrasound (FUS) therapy system in a breast cancer xenograft model. Specifically, MDA-MB-231 breast cancer xenograft tumors were induced in severe combined immuno-deficient female mice. The mice were treated with FUS alone, ultrasound and microbubbles (FUS + MB) alone, 8 Gy XRT alone, or a combined treatment consisting of ultrasound, microbubbles, and XRT (FUS + MB + XRT). Power Doppler imaging was conducted before and 24 h after treatment, at which time mice were sacrificed and tumors assessed histologically. The immunohistochemical analysis included terminal deoxynucleotidyl transferase dUTP nick end labeling, hematoxylin and eosin, cluster of differentiation-31 (CD31), Ki-67, carbonic anhydrase (CA-9), and ceramide labeling. Results: Tumors receiving treatment of FUS + MB combined with XRT demonstrated significant increase in cell death (p = 0.0006) compared to control group. Furthermore, CD31 and Power Doppler analysis revealed reduced tumor vascularization with combined treatment indicating (P < .0001) and (P = .0001), respectively compared to the control group. Additionally, lesser number of proliferating cells with enhanced tumor hypoxia, and ceramide content were also reported in group receiving a treatment of FUS + MB + XRT. Conclusion: The study results demonstrate that the combination of USMB with XRT enhances treatment outcomes.


Asunto(s)
Neoplasias de la Mama , Terapia por Ultrasonido , Humanos , Femenino , Animales , Ratones , Microburbujas , Xenoinjertos , Terapia por Ultrasonido/métodos , Ceramidas/metabolismo , Neoplasias de la Mama/radioterapia
12.
Am J Transl Res ; 13(5): 4437-4449, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150025

RESUMEN

Quantitative ultrasound (QUS) is a non-invasive imaging modality that permits the detection of tumor response following various cancer therapies. Based on ultrasound signal scattering from the biological system, scatterer size, and concentration of microscopic scatterers, QUS enables the rapid characterization of tumor cell death. In this study, tumor response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) in tumor-bearing mice, with prostate cancer xenografts (PC3), was examined using QUS. Treatment conditions included 1% (v/v) Definity microbubbles stimulated at ultrasound pressures (0, 246, and 570 kPa) and HT treatment (0, 10, 40, and 50 minutes). Three ultrasound backscatter parameters, mid-band fit (MBF), 0-MHz spectral intercept (SI), and spectral slope (SS) were estimated prior to, and 24 hours after treatment. Additionally, histological assessment of tumor cell death and tissue microstructural changes was used to complement the results obtained from ultrasound data. Results demonstrated a significant increase in QUS parameters (MBF and SI) followed combined USMB and HT treatment (P<0.05). In contrast, the backscatter parameters from the control (untreated) group, and USMB only group showed minimal changes (P>0.05). Furthermore, histological data demonstrated increased cell death and prominent changes in cellular and tissue structure, nucleus size, and subcellular constituent orientation followed combined treatments. The findings suggested that QUS parameters derived from the ultrasound backscattered power spectrum may be used to detect HT treatment effects in prostate cancer tumors in vivo.

13.
Clin Cancer Res ; 15(6): 2067-75, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19276277

RESUMEN

PURPOSE: Currently, no imaging modality is used routinely to assess tumor responses to radiotherapy within hours to days after the delivery of treatment. In this study, we show the application of quantitative ultrasound methods to characterize tumor responses to cancer radiotherapy in vivo, as early as 24 hours after treatment administration. EXPERIMENTAL DESIGN: Three mouse models of head and neck cancer were exposed to radiation doses of 0, 2, 4, and 8 Gray. Data were collected with an ultrasound scanner using frequencies of 10 to 30 MHz. Ultrasound estimates calculated from normalized power spectra and parametric images (spatial maps of local estimates of ultrasound parameters) were used as indicators of response. RESULTS: Two of the mouse models (FaDu and C666-1) exhibited large hyperechoic regions at 24 hours after radiotherapy. The ultrasound integrated backscatter increased by 6.5 to 8.2 dB (P < 0.001) and the spectral slopes increased from 0.77 to 0.90 dB/MHz for the C666-1 tumors and from 0.54 to 0.78 dB/MHz for the FaDu tumors (P < 0.05), in these regions compared with preirradiated tumors. The hyperechoic regions in the ultrasound images corresponded in histology to areas of cell death. Parametric images could discern the tumor regions that responded to treatment. The other cancer mouse model (Hep-2) was resistant to radiotherapy. CONCLUSIONS: The results indicate that cell structural changes after radiotherapy have a significant influence on ultrasound spectral parameters. This provides a foundation for future investigations regarding the use of ultrasound in cancer patients to individualize treatments noninvasively based on their responses to specific interventions.


Asunto(s)
Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/radioterapia , Animales , Línea Celular Tumoral , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Trasplante de Neoplasias , Trasplante Heterólogo , Ultrasonografía
14.
PLoS One ; 15(8): e0237372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32797049

RESUMEN

We have demonstrated that exposing human breast tumour xenografts to ultrasound-stimulated microbubbles enhances tumour cell death and vascular disruption resulting from hyperthermia treatment. The aim of this study was to investigate the effect of varying the hyperthermia and ultrasound-stimulated microbubbles treatment parameters in order to optimize treatment bioeffects. Human breast cancer (MDA-MB-231) tumour xenografts in severe combined immunodeficiency (SCID) mice were exposed to varying microbubble concentrations (0%, 0.1%, 1% or 3% v/v) and ultrasound sonication durations (0, 1, 3 or 5 min) at 570 kPa peak negative pressure and central frequency of 500 kHz. Five hours later, tumours were immersed in a 43°C water bath for varying hyperthermia treatment durations (0, 10, 20, 30, 40, 50 or 60 minutes). Results indicated a significant increase in tumour cell death reaching 64 ± 5% with combined treatment compared to 11 ± 3% and 26 ± 5% for untreated and USMB-only treated tumours, respectively. A similar but opposite trend was observed in the vascular density of the tumours receiving the combined treatment. Optimal treatment parameters were found to consist of 40 minutes of heat with low power ultrasound treatment microbubble parameters of 1 minute of sonification and a 1% microbubble concentration.


Asunto(s)
Neoplasias de la Mama/terapia , Hipertermia Inducida/métodos , Microburbujas , Animales , Neoplasias de la Mama/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Ratones
15.
Photoacoustics ; 20: 100201, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32775198

RESUMEN

The development of novel anticancer therapies warrants the parallel development of biomarkers that can quantify their effectiveness. Photoacoustic imaging has the potential to measure changes in tumor vasculature during treatment. Establishing the accuracy of imaging biomarkers requires direct comparisons with gold histological standards. In this work, we explore whether a new class of submicron, vascular disrupting, ultrasonically stimulated nanobubbles enhance radiation therapy. In vivo experiments were conducted on mice bearing prostate cancer tumors. Combined nanobubble plus radiation treatments were compared against conventional microbubbles and radiation alone (single 8 Gy fraction). Acoustic resolution photoacoustic imaging was used to monitor the effects of the treatments 2- and 24-hs post-administration. Histological examination provided metrics of tumor vascularity and tumoral cell death, both of which were compared to photoacoustic-derived biomarkers. Photoacoustic metrics of oxygen saturation reveal a 20 % decrease in oxygenation within 24 h post-treatment. The spectral slope metric could separate the response of the nanobubble treatments from the microbubble counterparts. This study shows that histopathological assessment correlated well with photoacoustic biomarkers of treatment response.

16.
Magn Reson Med ; 62(1): 46-55, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19253383

RESUMEN

Due to variability in patient response to cancer therapy, there is a growing interest in monitoring patient progress during treatment. Apoptotic cell death is one early marker of tumor response to treatment. Using known extracellular concentrations of gadolinium diethylenetriamine pentaacetic acid bismethylamide (Gd-DTPA-BMA) to vary the exchange regime, T(1) and T(2) relaxation data for acute myeloid leukemia (AML) cell samples were obtained and then analyzed using a two-pool model of relaxation with exchange. Leukemia cells treated with cisplatin to induce apoptosis exhibited a statistically significant (P < 0.05) decrease in intracellular longitudinal relaxation time, T(1I), from 1030 ms to 940 ms, a decrease (P < 0.001) in the intracellular water fraction, M(0I), from 0.86 to 0.68 and a statistically significant increase (P < 0.01) in transmembrane water exchange rate, k(IE), from 1.4 s(-1) to 6.8 s(-1). The changes in MR parameters correlated with quantitative histology, such as cellular cross-sectional area and average nuclear area measurements. The results of this study emphasize the importance of accounting for water exchange in dynamic contrast-enhanced MRI (DCE-MRI) studies, particularly those that examine tumor response to therapies in which apoptotic changes occur.


Asunto(s)
Apoptosis , Gadolinio DTPA/administración & dosificación , Aumento de la Imagen/métodos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/fisiopatología , Imagen por Resonancia Magnética/métodos , Línea Celular Tumoral , Medios de Contraste/administración & dosificación , Relación Dosis-Respuesta a Droga , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
PLoS One ; 14(12): e0226475, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31851698

RESUMEN

It is now well established that for tumour growth and survival, tumour vasculature is an important element. Studies have demonstrated that ultrasound-stimulated microbubble (USMB) treatment causes extensive endothelial cell death leading to tumour vascular disruption. The subsequent rapid vascular collapse translates to overall increases in tumour response to various therapies. In this study, we explored USMB involvement in the enhancement of hyperthermia (HT) treatment effects. Human prostate tumour (PC3) xenografts were grown in mice and were treated with USMB, HT, or with a combination of the two treatments. Treatment parameters consisted of ultrasound pressures of 0 to 740 kPa, the use of perfluorocarbon-filled microbubbles administered intravenously, and an HT temperature of 43°C delivered for various times (0-50 minutes). Single and multiple repeated treatments were evaluated. Tumour response was monitored 24 hours after treatments and tumour growth was monitored for up to over 30 days for a single treatment and 4 weeks for multiple treatments. Tumours exposed to USMB combined with HT exhibited enhanced cell death (p<0.05) and decreased vasculature (p<0.05) compared to untreated tumours or those treated with either USMB alone or HT alone within 24 hours. Deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and cluster of differentiation 31 (CD31) staining were used to assess cell death and vascular content, respectively. Further, tumours receiving a single combined USMB and HT treatment exhibited decreased tumour volumes (p<0.05) compared to those receiving either treatment alone when monitored over the duration of 30 days. Additionally, tumour response monitored weekly up to 4 weeks demonstrated a reduced vascular index and tumour volume, increased fibrosis and lesser number of proliferating cells with combined treatment of USMB and HT. Thus in this study, we characterize a novel therapeutic approach that combines USMB with HT to enhance treatment responses in a prostate cancer xenograft model in vivo.


Asunto(s)
Hipertermia Inducida , Microburbujas/uso terapéutico , Neoplasias de la Próstata/terapia , Terapia por Ultrasonido , Animales , Terapia Combinada , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones SCID , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Natl Cancer Inst ; 110(9): 1009-1018, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29506145

RESUMEN

Background: High-dose radiotherapy (>8-10 Gy) causes rapid endothelial cell death via acid sphingomyelinase (ASMase)-induced ceramide production, resulting in biologically significant enhancement of tumor responses. To further augment or solicit similar effects at low radiation doses, we used genetic and chemical approaches to evaluate mechano-acoustic activation of the ASMase-ceramide pathway by ultrasound-stimulated microbubbles (USMB). Methods: Experiments were carried out in wild-type and acid sphingomyelinase (asmase) knockout mice implanted with fibrosarcoma xenografts. A cohort of wild-type mice received the ASMase-ceramide pathway inhibitor sphingosine-1-phosphate (S1P). Mice were treated with varying radiation doses, with or without a priori USMB exposure at different microbubble concentrations. Treatment response was assessed with quantitative 3D Doppler ultrasound and immunohistochemistry at baseline, and at three, 24, and 72 hours after treatment, with three to five mice per treatment group at each time point. All statistical tests were two-sided. Results: Results confirmed an interaction between USMB and ionizing radiation at 24 hours (P < .001), with a decrease in tumor perfusion of up to 46.5% by three hours following radiation and USMB. This peaked at 24 hours, persisting for up to 72 hours, and was accompanied by extensive tumor cell death. In contrast, statistically nonsignificant and minimal tumor responses were noted in S1P-treated and asmase knockout mice for all treatments. Conclusions: This work is the first to confirm the involvement of the ASMase-ceramide pathway in mechanotransductive vascular targeting using USMB. Results also confirm that an acute vascular effect is driving this form of enhanced radiation response, and that it can be elicited at low radiation doses (<8-10 Gy) by a priori USMB exposure.


Asunto(s)
Ceramidas/metabolismo , Neoplasias/metabolismo , Neoplasias/radioterapia , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Fenómenos Biomecánicos , Terapia Combinada , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Microburbujas , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/radioterapia , Resultado del Tratamiento , Ondas Ultrasónicas
19.
Theranostics ; 8(2): 314-327, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29290810

RESUMEN

High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to characterize vascular and tumour response effects simultaneously, as well as a therapeutic modality to complement radiation therapy.


Asunto(s)
Muerte Celular/efectos de la radiación , Neoplasias/patología , Neoplasias/radioterapia , Animales , Ratones , Ratones Endogámicos C57BL , Microburbujas , Terapia por Ultrasonido/métodos , Ondas Ultrasónicas , Ultrasonografía/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
Ultrasound Med Biol ; 33(3): 389-401, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17257739

RESUMEN

High frequency ultrasound imaging (20 to 60 MHz) is increasingly being used in small animal imaging, molecular imaging and for the detection of structural changes during cell and tissue death. Ultrasonic tissue characterization techniques were used to measure the speed of sound, attenuation coefficient and integrated backscatter coefficient for (a) acute myeloid leukemia cells and corresponding isolated nuclei, (b) human epithelial kidney cells and corresponding isolated nuclei, (c) multinucleated human epithelial kidney cells and d) human breast cancer cells. The speed of sound for cells varied from 1522 to 1535 m/s, while values for nuclei were lower, ranging from 1493 to 1514 m/s. The attenuation coefficient slopes ranged from 0.0798 to 0.1073 dB mm(-1) MHz(-1) for cells and 0.0408 to 0.0530 dB mm(-1) MHz(-1) for nuclei. Integrated backscatter coefficient values for cells and isolated nuclei showed much greater variation and increased from 1.71 x 10(-4) Sr(-1) mm(-1) for the smallest nuclei to 26.47 x 10(-4) Sr(-1) mm(-1) for the cells with the largest nuclei. The findings suggest that integrated backscatter coefficient values, but not attenuation or speed of sound, are correlated with the size of the nuclei.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Núcleo Celular/diagnóstico por imagen , Riñón/diagnóstico por imagen , Leucemia Mieloide/diagnóstico por imagen , Enfermedad Aguda , Neoplasias de la Mama/patología , Células Cultivadas , Células Epiteliales/diagnóstico por imagen , Células Epiteliales/ultraestructura , Femenino , Humanos , Riñón/citología , Riñón/ultraestructura , Leucemia Mieloide/patología , Microscopía Electrónica , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA