RESUMEN
Treg therapy holds promise as a potentially curative approach to establish immune tolerance in transplantation and autoimmune disease. An outstanding question is whether therapeutic Tregs have the potential to transdifferentiate into effector T-cells and, thus, exacerbate rather than suppress immune responses. In mice, the transcription factor Helios is thought to promote Treg lineage stability in a range of inflammatory contexts. In humans, the role of Helios in Tregs is less clear, in part, due to the inability to enrich and study subsets of Helios-positive versus Helios-negative Tregs. Using an in vitro expansion system, we found that loss of high Helios expression and emergence of an intermediate Helios (Heliosmid )-expressing population correlated with Treg destabilization. We used CRISPR/Cas9 to genetically ablate Helios expression in human naive or memory Tregs and found that Helios-KO and unedited Tregs were equivalent in their suppressive function and stability in inflammation. Thus, high Helios expression is a marker, but not a driver, of human Treg stability in vitro. These data highlight the importance of monitoring Helios expression in therapeutic Treg manufacturing and provide new insight into the biological function of this transcription factor in human T-cells.
Asunto(s)
Antígenos de Diferenciación/inmunología , Regulación de la Expresión Génica/inmunología , Factor de Transcripción Ikaros/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos de Diferenciación/genética , Sistemas CRISPR-Cas , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Factor de Transcripción Ikaros/genética , RatonesRESUMEN
Regulatory T-cell (Treg) therapy is under clinical investigation for the treatment of transplant rejection, autoimmune disease, and graft-versus-host disease. With the advent of genome editing, attention has turned to reinforcing Treg function for therapeutic benefit. A hallmark of Tregs is dampened activation of PI3K-AKT signaling, of which PTEN is a major negative regulator. Loss-of-function studies of PTEN, however, have not conclusively shown a requirement for PTEN in upholding Treg function and stability. Using CRISPR-based genome editing in human Tregs, we show that PTEN ablation does not cause a global defect in Treg function and stability; rather, it selectively blocks their ability to suppress antigen-presenting cells. PTEN-KO Tregs exhibit elevated glycolytic activity, upregulate FOXP3, maintain a Treg phenotype, and have no discernible defects in lineage stability. Functionally, PTEN is dispensable for human Treg-mediated inhibition of T-cell activity in vitro and in vivo but is required for suppression of costimulatory molecule expression by antigen-presenting cells. These data are the first to define a role for a signaling pathway in controlling a subset of human Treg activity. Moreover, they point to the functional necessity of PTEN-regulated PI3K-AKT activity for optimal human Treg function.
Asunto(s)
Enfermedades Autoinmunes , Fosfohidrolasa PTEN , Linfocitos T Reguladores , Factores de Transcripción Forkhead/metabolismo , Humanos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Immune homeostasis in the intestine is tightly controlled by FOXP3+ regulatory T cells (Tregs), defects of which are linked to the development of chronic conditions, such as inflammatory bowel disease (IBD). As a mechanism of immune evasion, several species of intestinal parasites boost Treg activity. The parasite Heligmosomoides polygyrus is known to secrete a molecule (Hp-TGM) that mimics the ability of TGF-ß to induce FOXP3 expression in CD4+ T cells. The study aimed to investigate whether Hp-TGM could induce human FOXP3+ Tregs as a potential therapeutic approach for inflammatory diseases. CD4+ T cells from healthy volunteers were expanded in the presence of Hp-TGM or TGF-ß. Treg induction was measured by flow cytometric detection of FOXP3 and other Treg markers, such as CD25 and CTLA-4. Epigenetic changes were detected using ChIP-Seq and pyrosequencing of FOXP3. Treg phenotype stability was assessed following inflammatory cytokine challenge and Treg function was evaluated by cellular co-culture suppression assays and cytometric bead arrays for secreted cytokines. Hp-TGM efficiently induced FOXP3 expression (> 60%), in addition to CD25 and CTLA-4, and caused epigenetic modification of the FOXP3 locus to a greater extent than TGF-ß. Hp-TGM-induced Tregs had superior suppressive function compared with TGF-ß-induced Tregs, and retained their phenotype following exposure to inflammatory cytokines. Furthermore, Hp-TGM induced a Treg-like phenotype in in vivo differentiated Th1 and Th17 cells, indicating its potential to re-program memory cells to enhance immune tolerance. These data indicate Hp-TGM has potential to be used to generate stable human FOXP3+ Tregs to treat IBD and other inflammatory diseases.
Asunto(s)
Parásitos , Animales , Factores de Transcripción Forkhead , Humanos , Linfocitos T Reguladores , Células Th17 , Factor de Crecimiento Transformador betaRESUMEN
BACKGROUND: Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. OBJECTIVE: We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells. METHODS: Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4+ T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). RESULTS: Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+ Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. CONCLUSION: This study provides the first estimation of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of patients with celiac disease. FOXP3+CD39+ Treg cells comprised a major proportion of all circulating gluten-specific CD4+ T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis.
Asunto(s)
Enfermedad Celíaca/inmunología , Glútenes/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Antígenos CD/metabolismo , Apirasa/metabolismo , Células Cultivadas , Ensayo de Immunospot Ligado a Enzimas , Femenino , Factores de Transcripción Forkhead/metabolismo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/metabolismo , Humanos , Terapia de Inmunosupresión , Interferón gamma/metabolismo , Recuento de Linfocitos , Masculino , Polimorfismo de Nucleótido Simple , Especificidad del Receptor de Antígeno de Linfocitos T/inmunologíaRESUMEN
The role of forkhead box P3 (FOXP3) is well-established in T-regulatory cells, but the function of transient FOXP3 expression in activated human conventional T (Tconv) cells is unknown. In the present study, we used 2 approaches to determine the role of FOXP3 in human Tconv cells. First, we obtained Tconv clones from a female subject who is hemizygous for a null mutation in FOXP3, allowing the comparison of autologous T-cell clones that do or do not express FOXP3. Second, we knocked down activation-induced FOXP3 in Tconv cells from healthy donors with small interfering RNAagainst FOXP3. We found that FOXP3-deficient Tconv cells proliferate more and produce more cytokines than wild-type Tconv cells and have differential expression of 274 genes. We also investigated the role of FOXP3 in Th1 and Th17 cells and found that the expression of activation-induced FOXP3 was higher and more sustained in Th17 cells compared with Th1 cells. Knocking down FOXP3 expression in Th17 cells significantly increased the production of IFN-γ and decreased the expression of CCR4, but had no effect on IL-17 expression. These data reveal a novel function of FOXP3 in Tconv cells and suggest that expression of this protein is important in the function of multiple CD4(+) T-cell lineages.
Asunto(s)
Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Células TH1/fisiología , Células Th17/fisiología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/fisiología , Linaje de la Célula/inmunología , Proliferación Celular , Células Clonales/citología , Células Clonales/fisiología , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/inmunología , Humanos , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Masculino , ARN Interferente Pequeño , Receptores CCR4/genética , Receptores CCR4/metabolismo , Células TH1/metabolismo , Células Th17/metabolismo , TranscriptomaRESUMEN
Regulatory T cells (Tregs) have potential as a cell-based therapy to prevent or treat transplant rejection and autoimmunity. Using an HLA-A2-specific chimeric antigen receptor (A2-CAR), we previously showed that adoptive transfer of A2-CAR Tregs limited anti-HLA-A2 alloimmunity. However, it was unknown if A2-CAR Tregs could also limit immunity to autoantigens. Using a model of HLA-A2+ islet transplantation into immunodeficient non-obese diabetic mice, we investigated if A2-CAR Tregs could control diabetes induced by islet-autoreactive (BDC2.5) T cells. In mice transplanted with HLA-A2+ islets, A2-CAR Tregs reduced BDC2.5 T cell engraftment, proliferation and cytokine production, and protected mice from diabetes. Tolerance to islets was systemic, including protection of the HLA-A2negative endogenous pancreas. In tolerant mice, a significant proportion of BDC2.5 T cells gained FOXP3 expression suggesting that long-term tolerance is maintained by de novo Treg generation. Thus, A2-CAR Tregs mediate linked suppression and infectious tolerance and have potential therapeutic use to simultaneously control both allo- and autoimmunity in islet transplantation.
RESUMEN
BACKGROUND: Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is a primary immunodeficiency with autoimmunity caused by mutations in forkhead box P3 (FOXP3), which encodes a transcription factor involved in regulatory T (Treg) cell function. The mechanistic basis for how different mutations in FOXP3 cause distinct manifestations of IPEX remains unclear. OBJECTIVE: To determine whether 3 different point mutants of FOXP3 that cause severe or mild IPEX differ in their ability to reprogram conventional T cells into Treg cells. METHODS: Human CD4(+) T cells were transduced with wild-type or point mutant forms of FOXP3, and changes in cell surface marker expression, cytokine production, proliferation and suppressive capacity were assessed. Ex vivo T(H)17 cells were also transduced with different forms of FOXP3 to monitor changes in IL-17 production. RESULTS: The forkhead mutant F373A failed to upregulate CD25 and CCR4, did not suppress cytokine production, and induced suppressive activity less effectively than wild-type FOXP3. In contrast, although the forkhead mutant R347H was also defective in upregulation of CD25, it suppressed the production of cytokines, conferred suppressive capacity on CD4(+) T cells, and suppressed IL-17 production. F324L, a mutant outside the forkhead domain associated with mild IPEX, was equivalent to wild-type FOXP3 in all aspects tested. CONCLUSION: Mutations in FOXP3 that cause IPEX do not uniformly abrogate the ability of FOXP3 to regulate transcription and drive the development of Treg cells. These data support the notion that factors in addition to functional changes in Treg cells, such as alterations in conventional T cells, are involved in the pathogenesis of IPEX.
Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Síndromes de Inmunodeficiencia/genética , Proteínas Mutantes/metabolismo , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Adolescente , Antígenos CD4/biosíntesis , Proliferación Celular , Transdiferenciación Celular/genética , Células Cultivadas , Niño , Citocinas/genética , Citocinas/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Humanos , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/patología , Síndromes de Inmunodeficiencia/fisiopatología , Terapia de Inmunosupresión , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Mutación Puntual/genética , Poliendocrinopatías Autoinmunes , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Transgenes/genética , Adulto JovenRESUMEN
Regulatory T cell (Treg) therapy is a promising curative approach for a variety of immune-mediated conditions. CRISPR-based genome editing allows precise insertion of transgenes through homology-directed repair, but its use in human Tregs has been limited. We report an optimized protocol for CRISPR-mediated gene knockin in human Tregs with high-yield expansion. To establish a benchmark of human Treg dysfunction, we target the master transcription factor FOXP3 in naive and memory Tregs. Although FOXP3-ablated Tregs upregulate cytokine expression, effects on suppressive capacity in vitro manifest slowly and primarily in memory Tregs. Moreover, FOXP3-ablated Tregs retain their characteristic protein, transcriptional, and DNA methylation profile. Instead, FOXP3 maintains DNA methylation at regions enriched for AP-1 binding sites. Thus, although FOXP3 is important for human Treg development, it has a limited role in maintaining mature Treg identity. Optimized gene knockin with human Tregs will enable mechanistic studies and the development of tailored, next-generation Treg cell therapies.
Asunto(s)
Sistemas CRISPR-Cas/genética , Factores de Transcripción Forkhead/metabolismo , Técnicas de Sustitución del Gen , Linfocitos T Reguladores/inmunología , Secuencia de Bases , Metilación de ADN/genética , Reparación del ADN , Dependovirus/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Terapia de Inmunosupresión , Interleucina-2/metabolismo , Subgrupos Linfocitarios/inmunología , Fenotipo , Plásmidos/metabolismo , Factores de Tiempo , Transcripción Genética , TransgenesRESUMEN
BACKGROUND: Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. RESULTS: Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. CONCLUSIONS: PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required for the transition of glioblastoma cells through mitosis. PKCι therefore has a role in both glioblastoma invasion and proliferation, two key aspects in the malignant nature of this disease.
Asunto(s)
Glioblastoma/enzimología , Glioblastoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proteínas del Citoesqueleto/metabolismo , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente , Glioblastoma/genética , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Microscopía Confocal , Microscopía por Video , Miosina Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de TiempoRESUMEN
Antigen-specific regulatory T cells (Tregs) engineered with chimeric antigen receptors (CARs) are a potent immunosuppressive cellular therapy in multiple disease models and could overcome shortcomings of polyclonal Treg therapy. CAR therapy was initially developed with conventional T cells, which have different signaling requirements than do Tregs To date, most of the CAR Treg studies used second-generation CARs, encoding a CD28 or 4-1BB co-receptor signaling domain and CD3ζ, but it was not known if this CAR design was optimal for Tregs Using a human leukocyte antigen-A2-specific CAR platform and human Tregs, we compared 10 CARs with different co-receptor signaling domains and systematically tested their function and CAR-stimulated gene expression profile. Tregs expressing a CAR encoding CD28wt were markedly superior to all other CARs tested in an in vivo model of graft-versus-host disease. In vitro assays revealed stable expression of Helios and an ability to suppress CD80 expression on dendritic cells as key in vitro predictors of in vivo function. This comprehensive study of CAR signaling domain variants in Tregs can be leveraged to optimize CAR design for use in antigen-specific Treg therapy.
Asunto(s)
Receptores Quiméricos de Antígenos , Antígenos CD28 , Humanos , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal , Linfocitos T ReguladoresRESUMEN
Adipose tissue (AT) regulatory T cells (T regs) control inflammation and metabolism. Diet-induced obesity causes hyperinsulinemia and diminishes visceral AT (VAT) T reg number and function, but whether these two phenomena were mechanistically linked was unknown. Using a T reg-specific insulin receptor (Insr) deletion model, we found that diet-induced T reg dysfunction is driven by T reg-intrinsic insulin signaling. Compared with Foxp3cre mice, after 13 wk of high-fat diet, Foxp3creInsrfl/fl mice exhibited improved glucose tolerance and insulin sensitivity, effects associated with lower AT inflammation and increased numbers of ST2+ T regs in brown AT, but not VAT. Similarly, Foxp3creInsrfl/fl mice were protected from the metabolic effects of aging, but surprisingly had reduced VAT T regs and increased VAT inflammation compared with Foxp3cre mice. Thus, in both diet- and aging-associated hyperinsulinemia, excessive Insr signaling in T regs leads to undesirable metabolic outcomes. Ablation of Insr signaling in T regs represents a novel approach to mitigate the detrimental effects of hyperinsulinemia on immunoregulation of metabolic syndrome.
Asunto(s)
Envejecimiento/inmunología , Dieta Alta en Grasa/efectos adversos , Grasa Intraabdominal/inmunología , Síndrome Metabólico/inmunología , Receptor de Insulina/deficiencia , Linfocitos T Reguladores/inmunología , Envejecimiento/genética , Envejecimiento/patología , Animales , Eliminación de Gen , Grasa Intraabdominal/patología , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Ratones Transgénicos , Receptor de Insulina/inmunología , Linfocitos T Reguladores/patologíaRESUMEN
BACKGROUND: Multiple therapeutic strategies to restore immune regulation and slow type 1 diabetes (T1D) progression are in development and testing. A major challenge has been defining biomarkers to prospectively identify subjects likely to benefit from immunotherapy and/or measure intervention effects. We previously found that, compared with healthy controls, Tregs from children with new-onset T1D have an altered Treg gene signature (TGS), suggesting that this could be an immunoregulatory biomarker. METHODS: nanoString was used to assess the TGS in sorted Tregs (CD4+CD25hiCD127lo) or peripheral blood mononuclear cells (PBMCs) from individuals with T1D or type 2 diabetes, healthy controls, or T1D recipients of immunotherapy. Biomarker discovery pipelines were developed and applied to various sample group comparisons. RESULTS: Compared with controls, the TGS in isolated Tregs or PBMCs was altered in adult new-onset and cross-sectional T1D cohorts, with sensitivity or specificity of biomarkers increased by including T1D-associated SNPs in algorithms. The TGS was distinct in T1D versus type 2 diabetes, indicating disease-specific alterations. TGS measurement at the time of T1D onset revealed an algorithm that accurately predicted future rapid versus slow C-peptide decline, as determined by longitudinal analysis of placebo arms of START and T1DAL trials. The same algorithm stratified participants in a phase I/II clinical trial of ustekinumab (αIL-12/23p40) for future rapid versus slow C-peptide decline. CONCLUSION: These data suggest that biomarkers based on measuring TGSs could be a new approach to stratify patients and monitor autoimmune activity in T1D. FUNDING: JDRF (1-PNF-2015-113-Q-R, 2-PAR-2015-123-Q-R, 3-SRA-2016-209-Q-R, 3-PDF-2014-217-A-N), the JDRF Canadian Clinical Trials Network, the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (UM1AI109565 and FY15ITN168), and BCCHRI.
Asunto(s)
Biomarcadores/análisis , Diabetes Mellitus Tipo 1/inmunología , Linfocitos T Reguladores/inmunología , Adolescente , Adulto , Algoritmos , Canadá , Biología Computacional , Estudios Transversales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2 , Regulación de la Expresión Génica , Genotipo , Humanos , Inmunoterapia , Leucocitos Mononucleares , ARN Mensajero/metabolismo , Adulto JovenRESUMEN
Chimeric antigen receptor (CAR) technology can be used to engineer the antigen specificity of regulatory T cells (Tregs) and improve their potency as an adoptive cell therapy in multiple disease models. As synthetic receptors, CARs carry the risk of immunogenicity, particularly when derived from nonhuman antibodies. Using an HLA-A*02:01-specific CAR (A2-CAR) encoding a single-chain variable fragment (Fv) derived from a mouse antibody, we developed a panel of 20 humanized A2-CARs (hA2-CARs). Systematic testing demonstrated variations in expression, and ability to bind HLA-A*02:01 and stimulate human Treg suppression in vitro. In addition, we developed a new method to comprehensively map the alloantigen specificity of CARs, revealing that humanization reduced HLA-A cross-reactivity. In vivo bioluminescence imaging showed rapid trafficking and persistence of hA2-CAR Tregs in A2-expressing allografts, with eventual migration to draining lymph nodes. Adoptive transfer of hA2-CAR Tregs suppressed HLA-A2+ cell-mediated xenogeneic graft-versus-host disease and diminished rejection of human HLA-A2+ skin allografts. These data provide a platform for systematic development and specificity testing of humanized alloantigen-specific CARs that can be used to engineer specificity and homing of therapeutic Tregs.
Asunto(s)
Isoantígenos/inmunología , Isoantígenos/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Traslado Adoptivo , Aloinjertos , Animales , Femenino , Antígenos HLA-A , Antígeno HLA-A2/inmunología , Humanos , Tolerancia Inmunológica , Inmunoterapia , Inmunoterapia Adoptiva , Células K562 , Ratones , Ratones Transgénicos , Anticuerpos de Cadena Única , Piel/patología , Trasplante de Piel , Inmunología del Trasplante , Trasplante Homólogo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Adoptive immunotherapy with regulatory T cells (Tregs) is a promising treatment for allograft rejection and graft-versus-host disease (GVHD). Emerging data indicate that, compared with polyclonal Tregs, disease-relevant antigen-specific Tregs may have numerous advantages, such as a need for fewer cells and reduced risk of nonspecific immune suppression. Current methods to generate alloantigen-specific Tregs rely on expansion with allogeneic antigen-presenting cells, which requires access to donor and recipient cells and multiple MHC mismatches. The successful use of chimeric antigen receptors (CARs) for the generation of antigen-specific effector T cells suggests that a similar approach could be used to generate alloantigen-specific Tregs. Here, we have described the creation of an HLA-A2-specific CAR (A2-CAR) and its application in the generation of alloantigen-specific human Tregs. In vitro, A2-CAR-expressing Tregs maintained their expected phenotype and suppressive function before, during, and after A2-CAR-mediated stimulation. In mouse models, human A2-CAR-expressing Tregs were superior to Tregs expressing an irrelevant CAR at preventing xenogeneic GVHD caused by HLA-A2+ T cells. Together, our results demonstrate that use of CAR technology to generate potent, functional, and stable alloantigen-specific human Tregs markedly enhances their therapeutic potential in transplantation and sets the stage for using this approach for making antigen-specific Tregs for therapy of multiple diseases.
Asunto(s)
Antígeno HLA-A2/inmunología , Isoantígenos/inmunología , Receptores de Antígenos de Linfocitos T , Proteínas Recombinantes de Fusión , Linfocitos T Reguladores/inmunología , Animales , Femenino , Antígeno HLA-A2/genética , Humanos , Isoantígenos/genética , Masculino , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunologíaRESUMEN
Type 1 diabetes (T1D) is caused by immune-mediated destruction of insulin-producing ß-cells. Insufficient control of autoreactive T cells by regulatory T cells (Tregs) is believed to contribute to disease pathogenesis, but changes in Treg function are difficult to quantify because of the lack of Treg-exclusive markers in humans and the complexity of functional experiments. We established a new way to track Tregs by using a gene signature that discriminates between Tregs and conventional T cells regardless of their activation states. The resulting 31-gene panel was validated with the NanoString nCounter platform and then measured in sorted CD4(+)CD25(hi)CD127(lo) Tregs from children with T1D and age-matched control subjects. By using biomarker discovery analysis, we found that expression of a combination of six genes, including TNFRSF1B (CD120b) and FOXP3, was significantly different between Tregs from subjects with new-onset T1D and control subjects, resulting in a sensitive (mean ± SD 0.86 ± 0.14) and specific (0.78 ± 0.18) biomarker algorithm. Thus, although the proportion of Tregs in peripheral blood is similar between children with T1D and control subjects, significant changes in gene expression can be detected early in disease process. These findings provide new insight into the mechanisms underlying the failure to control autoimmunity in T1D and might lead to a biomarker test to monitor Tregs throughout disease progression.
Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 1/diagnóstico , Tamizaje Masivo/métodos , Linfocitos T Reguladores/metabolismo , Transcriptoma , Adulto , Edad de Inicio , Autoinmunidad/genética , Biomarcadores/análisis , Estudios de Casos y Controles , Células Cultivadas , Niño , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Progresión de la Enfermedad , Humanos , Masculino , Sensibilidad y EspecificidadRESUMEN
T regulatory cells (Tregs) control immune homeostasis by preventing inappropriate responses to self and nonharmful foreign antigens. Tregs use multiple mechanisms to control immune responses, all of which require these cells to be near their targets of suppression; however, it is not known how Treg-to-target proximity is controlled. Here, we found that Tregs attract CD4+ and CD8+ T cells by producing chemokines. Specifically, Tregs produced both CCL3 and CCL4 in response to stimulation, and production of these chemokines was critical for migration of target T cells, as Tregs from Ccl3-/- mice, which are also deficient for CCL4 production, did not promote migration. Moreover, CCR5 expression by target T cells was required for migration of these cells to supernatants conditioned by Tregs. Tregs deficient for expression of CCL3 and CCL4 were impaired in their ability to suppress experimental autoimmune encephalomyelitis or islet allograft rejection in murine models. Moreover, Tregs from subjects with established type 1 diabetes were impaired in their ability to produce CCL3 and CCL4. Together, these results demonstrate a previously unappreciated facet of Treg function and suggest that chemokine secretion by Tregs is a fundamental aspect of their therapeutic effect in autoimmunity and transplantation.
Asunto(s)
Quimiocina CCL3/biosíntesis , Quimiocina CCL4/biosíntesis , Linfocitos T Reguladores/fisiología , Adolescente , Traslado Adoptivo , Animales , Proliferación Celular , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Quimiotaxis de Leucocito , Niño , Preescolar , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Humanos , Lactante , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores CCR5/fisiologíaRESUMEN
Levels of p27(Kip1), a key negative regulator of the cell cycle, are often decreased in cancer. In most cancers, levels of p27(Kip1) mRNA are unchanged and increased proteolysis of the p27(Kip1) protein is thought to be the primary mechanism for its downregulation. Here we show that p27(Kip1) protein levels are also downregulated by microRNAs in cancer cells. We used RNA interference to reduce Dicer levels in human glioblastoma cell lines and found that this caused an increase in p27(Kip1) levels and a decrease in cell proliferation. When the coding sequence for the 3'UTR of the p27(Kip1) mRNA was inserted downstream of a luciferase reporter gene, Dicer depletion also enhanced expression of the reporter gene product. The microRNA target site software TargetScan predicts that the 3'UTR of p27(Kip1) mRNA contains multiple sites for microRNAs. These include two sites for microRNA 221 and 222, which have been shown to be upregulated in glioblastoma relative to adjacent normal brain tissue. The genes for microRNA 221 and microRNA 222 occupy adjacent sites on the X chromosome; their expression appears to be coregulated and they also appear to have the same target specificity. Antagonism of either microRNA 221 or 222 in glioblastoma cells also caused an increase in p27(Kip1) levels and enhanced expression of the luciferase reporter gene fused to the p27(Kip1) 3'UTR. These data show that p27(Kip1) is a direct target for microRNAs 221 and 222, and suggest a role for these microRNAs in promoting the aggressive growth of human glioblastoma.