Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38941083

RESUMEN

Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.


Asunto(s)
Introgresión Genética , Resistencia a los Insecticidas , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Resistencia a los Insecticidas/genética , Sistema Enzimático del Citocromo P-450/genética , América del Norte , Adaptación Biológica/genética , Adaptación Fisiológica/genética , Selección Genética , Especies Introducidas
2.
Zootaxa ; 3755: 287-94, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24869822

RESUMEN

Grapholita orbexilana, new species, is described from Illinois, Kentucky, and Ohio, USA. The larvae feed exclusively on Orbexilum onobrychis (Fabaceae), a plant of conservation interest in the Midwest. The moth is univoltine; its complete annual life cycle is detailed. Adult morphology readily distinguishes G. orbexilana from all other midwestern species of Grapholita; diagnostic information is provided. Observations on morphology, larval host plant preference, and pheromone attraction are presented to support the assignment of G. orbexilana to the jungiella species group of the subgenus Grapholita.


Asunto(s)
Mariposas Nocturnas/anatomía & histología , Mariposas Nocturnas/clasificación , Animales , Demografía , Femenino , Larva/anatomía & histología , Larva/clasificación , Larva/fisiología , Masculino , Medio Oeste de Estados Unidos , Mariposas Nocturnas/fisiología , Pupa , Especificidad de la Especie
3.
Insects ; 15(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39194790

RESUMEN

Helicoverpa armigera is among the most problematic agricultural pests worldwide due to its polyphagy and ability to evolve pesticide resistance. Molecular detection methods for H. armigera have been developed to track its spread, as such methods allow for rapid and accurate differentiation from the native sibling species H. zea. Droplet digital PCR (ddPCR) is a preferred method for bulk screening due to its accuracy and tolerance to PCR inhibitors; however, real-time PCR is less expensive and more widely available in molecular labs. Improvements to DNA extraction yield, purity, and throughput are crucial for real-time PCR assay optimization. Bulk DNA extractions have recently been improved to where real-time PCR sensitivity can equal that of ddPCR, but these new methods require significant time and specialized equipment. In this study, we improve upon previously published bulk DNA extraction methods by reducing bench time and materials. Our results indicate that the addition of caffeine and RNase A improves DNA extraction, resulting in lower Cq values during real-time PCR while reducing the processing time and cost per specimen. Such improvements will enable the use of high throughput screening methods across multiple platforms to improve the probability of detection of H. armigera.

4.
Sci Rep ; 14(1): 10803, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734771

RESUMEN

The northern giant hornet Vespa mandarinia (NGH) is a voracious predator of other insect species, including honey bees. NGH's native range spans subtropical and temperate regions across much of east and southeast Asia and, in 2019, exotic populations of the species were discovered in North America. Despite this broad range and invasive potential, investigation of the population genomic structure of NGH across its native and introduced ranges has thus far been limited to a small number of mitochondrial samples. Here, we present analyses of genomic data from NGH individuals collected across the species' native range and from exotic individuals collected in North America. We provide the first survey of whole-genome population variation for any hornet species, covering this species' native and invasive ranges, and in doing so confirm likely origins in Japan and South Korea for the two introductions. We additionally show that, while this introduced population exhibited strongly elevated levels of inbreeding, these signatures of inbreeding are also present in some long-standing native populations, which may indicate that inbreeding depression alone is insufficient to prevent the persistence of NGH populations. As well as highlighting the importance of ongoing monitoring and eradication efforts to limit the spread of this species outside of its natural range, our data will serve as a foundational database for future genomic studies into introduced hornet populations.


Asunto(s)
Especies Introducidas , Avispas , Animales , América del Norte , Avispas/genética , Genética de Población , Genómica/métodos , Variación Genética , Endogamia , Genoma de los Insectos
5.
Plant Physiol ; 159(4): 1834-44, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22645068

RESUMEN

The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704-4,661 mg kg(-1) dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems.


Asunto(s)
Planta del Astrágalo/metabolismo , Ecosistema , Selenio/metabolismo , Animales , Flores/anatomía & histología , Flores/metabolismo , Herbivoria/fisiología , Larva/fisiología , Modelos Biológicos , Mariposas Nocturnas/fisiología , Especificidad de Órganos , Semillas/anatomía & histología , Semillas/metabolismo , Espectrometría por Rayos X , Azufre/metabolismo , Espectroscopía de Absorción de Rayos X
6.
Zootaxa ; 3746: 301-37, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25113479

RESUMEN

A revised world catalogue of Eucopina, Eucosma, Pelochrista, and Phaneta is provided. Assignment to genus is based on generic redescriptions by Gilligan et al. (2013). A total of 709 names (including subspecies and synonyms) are listed, including 251 new combinations and 52 revised combinations.


Asunto(s)
Mariposas Nocturnas/clasificación , Animales , Femenino , Masculino
7.
Zootaxa ; 3630: 489-504, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26131527

RESUMEN

Eucosma Hübner is the largest genus in the Tortricidae with more than 290 named species. Historically, there has been confusion about the assignment of species to Eucosma and related genera, a problem which is perpetuated by the lack of a type specimen for the type species, E. circulana Hübner. Here we designate a neotype for E. circulana following analysis of eight North American species having similarities with that taxon. Eucosma circulana and E. gemellana Heinrich are redescribed, the latter being elevated from subspecies to species status. Eucosma paragemellana, new species, is described from specimens previously confused with E. gemellana, and E. fraudabilis Heinrich is reviewed.


Asunto(s)
Lepidópteros/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Tamaño Corporal , Femenino , Lepidópteros/anatomía & histología , Lepidópteros/crecimiento & desarrollo , Masculino , Tamaño de los Órganos
8.
Insects ; 14(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37887809

RESUMEN

Insect viruses have been described from numerous lineages, yet patterns of genetic exchange and viral prevalence, which are essential to understanding host-virus coevolution, are rarely studied. In Helicoverpa zea, the virus HzNV-2 can cause deformity of male and female genitalia, resulting in sterility. Using ddPCR, we found that male H. zea with malformed genitalia (agonadal) contained high levels of HzNV-2 DNA, confirming previous work. HzNV-2 was found to be prevalent throughout the United States, at more than twice the rate of the baculovirus HaSNPV, and that it contained several host-acquired DNA sequences. HzNV-2 possesses four recently endogenized lepidopteran genes and several more distantly related genes, including one gene with a bacteria-like sequence found in both host and virus. Among the recently acquired genes is cytosolic serine hydroxymethyltransferase (cSHMT). In nearly all tested H. zea, cSHMT contained a 200 bp transposable element (TE) that was not found in cSHMT of the sister species H. armigera. No other virus has been found with host cSHMT, and the study of this shared copy, including possible interactions, may yield new insights into the function of this gene with possible applications to insect biological control, and gene editing.

9.
Sci Rep ; 13(1): 13017, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563256

RESUMEN

Species identification is necessary to prevent introductions of exotic plant pests through global trade. Many of these pests are understudied and lack publicly available DNA sequence data on which rapid molecular identification methods can be based. One such lineage is the genus Chrysodeixis, which includes three species of potential concern for United States trade initiatives: C. includens, C. chalcites, and C. eriosoma. Here we describe a method to generate robust 45S rDNA profiles using long read sequencing in order to clarify evolutionary relationships and develop a real-time PCR identification technique. Such an identification tool will be useful in rapidly differentiating between Chrysodeixis species of quarantine concern where traditional morphological identification methods are insufficient. Molecular methods such as this greatly reduce the time spent identifying each specimen, allow for detection of eDNA, vastly increase throughput, and increase the probability of detection. The methods presented here will be generally adaptable to any understudied lepidopteran taxa that necessitates a molecular diagnostic assay and, with adjustment or testing of the primers, could be applied to any group for which development of rDNA profiles in a benchtop setting would prove useful.


Asunto(s)
Mariposas Nocturnas , Animales , ADN Ribosómico/genética , Mariposas Nocturnas/genética , Secuenciación de Nucleótidos de Alto Rendimiento
10.
Front Insect Sci ; 3: 1134781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469507

RESUMEN

The northern giant hornet, Vespa mandarinia (Hymenoptera: Vespidae), was detected for the first time in North America in 2019. Four nests have since been located and removed in northwestern Washington State as part of an extensive survey and eradication program. This recent introduction into North America has prompted new research on the biology and ecology of V. mandarinia to help inform management strategies. In its native range, V. mandarinia is known to prey on a variety of insects including the economically important honey bee species Apis cerana and Apis mellifera. Although A. cerana has developed defense mechanisms against attack by V. mandarinia, A. mellifera have no such defenses and an entire hive can be quickly destroyed by only a few hornets. In North America the hornet has been observed foraging on paper wasps (Polistes dominula) and honey bees, but little else is known about prey use in its novel range. To address this knowledge gap, we employed a DNA metabarcoding approach to characterize species detected in larval feces collected from 3 of the 4 Washington V. mandarinia nests found to date. Sequences were recovered for 56 species across fourteen orders, of which 36 species were likely prey items and 20 were suspected inquilines. The most frequently detected species were other social Hymenoptera, with Dolichovespula maculata, P. dominula, and A. mellifera present in most samples. All of the species detected, except for A. mellifera, represent new prey records for V. mandarinia, with eight families of insects newly associated with giant hornets. These results suggest that V. mandarinia in Washington preys on an assortment of insects similar to those documented in its native range, and that this new invader has readily incorporated novel species into its foraging and diet.

11.
J Econ Entomol ; 116(3): 973-982, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37023722

RESUMEN

Helicoverpa armigera (Hübner) is a major crop pest native to Europe, Asia, Australia, and Africa which has recently invaded South America and has caused billions of dollars in agricultural losses. Because of challenges in differentiating between H. armigera and Helicoverpa zea (Boddie), a closely related species native to North and South America, genetic tests have previously been developed to detect H. armigera DNA in pooled samples of moth legs. In this study, a field-based recombinase polymerase amplification (RPA) assay using a lateral flow strip and a qPCR melt curve assay were developed for specific detection of H. armigera DNA in pooled moth samples. In addition, a crude DNA extraction protocol for whole moths was developed to allow rapid preparation of DNA samples. The RPA field test was able to detect ≥ 10 pg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of 999 H. zea equivalents. The qPCR assay was able to detect ≥ 100 fg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of up to 99,999 H. zea equivalents. Both RPA and qPCR assays detected H. armigera in the crude DNA extracted in the field from a pool of one H. armigera moth and 999 H. zea moths. These newly developed molecular assays to detect H. armigera will contribute to large-scale surveillance programs of H. armigera.


Asunto(s)
Mariposas Nocturnas , Recombinasas , Animales , Mariposas Nocturnas/genética , Australia , Europa (Continente)
12.
Front Insect Sci ; 3: 1168586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38469542

RESUMEN

Diabrotica undecimpunctata is a multivoltine polyphagous beetle species that has long been documented as a significant agricultural pest throughout its native range in North America. This beetle can vector bacterial and viral plant pathogens that result in major losses to crops such as cucumber and soybean. Many countries outside the Americas treat D. undecimpunctata as a species of quarantine importance, while in the USA only the subspecies D. u. duodecimnotata is subject to quarantine, to prevent introduction from Mexico. Identification of D. undecimpunctata on the basis of morphology alone can be complicated given the use of conflicting characters in the description of some subspecific taxa. To better understand relationships among D. undecimpunctata subspecies and other related species, we sequenced mitochondrial cytochrome oxidase 1 (CO1) and nuclear internal transcribed spacer 2 (ITS2) DNA from individuals in different subspecific taxa and across different parts of the species range using museum samples and interceptions. When our data were combined with publicly available Diabrotica data, no pattern of divergence consistent with the currently recognized subspecific designations was found. In addition, we compared phylogenetic patterns in CO1 data from the congener D. virgifera to demonstrate the utility of mitochondrial data in resolving subspecies. From the CO1 data, a diagnostic real-time PCR assay was developed that could successfully identify all haplotypes within the large D. undecimpunctata clade for use in surveys and identification at ports of entry. These findings underscore the need to resolve molecular and morphological datasets into cogent, lineage-based groupings. Such efforts will provide an evolutionary context for the study of agriculturally important attributes of Diabrotica such as host preferences, xenobiotic metabolism, and natural and anthropogenic patterns of dispersal.

13.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35959935

RESUMEN

Helicoverpa zea (Lepidoptera: Noctuidae) is an insect pest of major cultivated crops in North and South America. The species has adapted to different host plants and developed resistance to several insecticidal agents, including Bacillus thuringiensis (Bt) insecticidal proteins in transgenic cotton and maize. Helicoverpa zea populations persist year-round in tropical and subtropical regions, but seasonal migrations into temperate zones increase the geographic range of associated crop damage. To better understand the genetic basis of these physiological and ecological characteristics, we generated a high-quality chromosome-level assembly for a single H. zea male from Bt-resistant strain, HzStark_Cry1AcR. Hi-C data were used to scaffold an initial 375.2 Mb contig assembly into 30 autosomes and the Z sex chromosome (scaffold N50 = 12.8 Mb and L50 = 14). The scaffolded assembly was error-corrected with a novel pipeline, polishCLR. The mitochondrial genome was assembled through an improved pipeline and annotated. Assessment of this genome assembly indicated 98.8% of the Lepidopteran Benchmark Universal Single-Copy Ortholog set were complete (98.5% as complete single copy). Repetitive elements comprised approximately 29.5% of the assembly with the plurality (11.2%) classified as retroelements. This chromosome-scale reference assembly for H. zea, ilHelZeax1.1, will facilitate future research to evaluate and enhance sustainable crop production practices.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Lepidópteros , Mariposas Nocturnas , Animales , Insecticidas/farmacología , Bacillus thuringiensis/genética , Zea mays , Cromosomas Sexuales , Proteínas Bacterianas/genética , Plantas Modificadas Genéticamente , Proteínas Hemolisinas/genética , Mariposas Nocturnas/genética , Control Biológico de Vectores , Larva
14.
J Adv Res ; 53: 99-114, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36564001

RESUMEN

INTRODUCTION: Honey bees provides valuable pollination services for world food crops and wild flowering plants which are habitats of many animal species and remove carbon dioxide from the atmosphere, a powerful tool in the fight against climate change. Nevertheless, the honey bee population has been declining and the majority of colony losses occur during the winter. OBJECTIVES: The goal of this study was to understand the mechanisms underlying overwinter colony losses and develop novel therapeutic strategies for improving bee health. METHODS: First, pathogen prevalence in overwintering bees were screened between 2015 and 2018. Second, RNA sequencing (RNA-Seq) for transcriptional profiling of overwintering honey bees was conducted and qRT-PCR was performed to confirm the results of the differential expression of selected genes. Lastly, laboratory bioassays were conducted to measure the effects of cold challenges on bee survivorship and stress responses and to assess the effect of a novel medication for alleviating cold stress in honey bees. RESULTS: We identified that sirtuin signaling pathway is the most significantly enriched pathway among the down-regulated differentially expressed genes (DEGs) in overwintering diseased bees. Moreover, we showed that the expression of SIRT1 gene, a major sirtuin that regulates energy and immune metabolism, was significantly downregulated in bees merely exposed to cold challenges, linking cold stress with altered gene expression of SIRT1. Furthermore, we demonstrated that activation of SIRT1 gene expression by SRT1720, an activator of SIRT1 expression, could improve the physiology and extend the lifespan of cold-stressed bees. CONCLUSION: Our study suggests that increased energy consumption of overwintering bees for maintaining hive temperature reduces the allocation of energy toward immune functions, thus making the overwintering bees more susceptible to disease infections and leading to high winter colony losses. The novel information gained from this study provides a promising avenue for the development of therapeutic strategies for mitigating colony losses, both overwinter and annually.


Asunto(s)
Transducción de Señal , Sirtuina 1 , Abejas , Animales , Reacción en Cadena de la Polimerasa , Susceptibilidad a Enfermedades , Polinización
15.
J Econ Entomol ; 115(6): 2125-2129, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36354050

RESUMEN

The moth species Phthorimaea absoluta (Meyrick) (formerly Tuta absoluta) is serious threat to tomato and other Solanaceous crops worldwide and is invasive throughout Europe, Asia, and Africa. While P. absoluta has not yet been found in the U.S. recent detections in the Caribbean have raised concerns that the species could be introduced to mainland North America. To improve detection capacity, a droplet digital PCR (ddPCR) assay was developed that employs a nondestructive bulk DNA extraction method able to detect one P. absoluta sample among 200 nontargets. Such high-throughput and sensitive molecular assays are essential to preventing introductions through early detection and response. This assay can also be used in areas where P. absoluta is established to monitor outbreaks and track migratory patterns.


Asunto(s)
Lepidópteros , Mariposas Nocturnas , Solanum lycopersicum , Animales , Mariposas Nocturnas/genética , Productos Agrícolas , Reacción en Cadena de la Polimerasa , Europa (Continente)
16.
J Econ Entomol ; 104(3): 920-32, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21735912

RESUMEN

The light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), is a horticultural pest of Australia and New Zealand that has more recently invaded Hawaii, Europe, and California. A 2,216-bp region of the mitochondrial genome containing the cytochrome oxidase I and II genes was sequenced from 752 individuals. Haplotype network analyses revealed a major split between a predominantly Western Australian clade and all other samples, suggestive of either a deep genetic divergence or a cryptic species. Nucleotide and haplotype diversity were highest in the country of origin, Australia, and in New Zealand populations, with evidence of haplotype sharing between New Zealand and Tasmania. Nucleotide and haplotype diversity were higher in California than within the British Isles or Hawaii. From the total of 96 haplotypes, seven were found in California, of which four were private. Within California, there have been at least two introductions; based on genetic diversity we were unable to assign a likely source for a single moth found and eradicated in Los Angeles in 2007; however, our data suggest it is unlikely that Hawaii and the British Isles are sources of the major E. postvittana population found throughout the rest of the state since 2006.


Asunto(s)
ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Genes de Insecto , Variación Genética , Mariposas Nocturnas/genética , Aminoácidos/química , Animales , Australia , California , ADN/química , Femenino , Haplotipos , Especies Introducidas , Masculino , Datos de Secuencia Molecular , Mariposas Nocturnas/clasificación , Filogenia
17.
Plants (Basel) ; 10(12)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34961282

RESUMEN

Identifying the particular guilds of herbivore arthropods that affect the production of crops is key to developing sustainable pest-management strategies; however, there is incomplete information about the identity of herbivore arthropods that could potentially damage the production of both highland and lowland quinoa landraces grown in Chile. By both reviewing the literature and conducting field collections across a large latitudinal gradient, we generated an updated list of 43 herbivore arthropods associated with quinoa production in Chile. In general, most species are polyphagous feeders, and only seven are specialists. The number and identity of species varied in relation with the latitude, such that four distinctive assemblages of herbivores were identified, each containing 32, 27, 34, and 22 species between latitudes 18-26, 26-32, 32-40, and 40-44° S, respectively. The most northern production area (18-26° S) is affected by nine unique species, including the major quinoa pest Eurysacca quinoae Povolný (Lepidoptera: Gelechiidae). Similarly, the central area (32-40° S) contains four unique species, including Eurysacca media Povolný (Lepidoptera: Gelechiidae) and Orthotylus flavosparsus (Sahlberg) (Hemiptera: Miridae). The particular species assemblages described here will help further development of local pest-management practices.

18.
Insects ; 12(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34680654

RESUMEN

Helicoverpa armigera (Hübner) is one of the most important agricultural pests in the world. This historically Old World species was first reported in Brazil in 2013 and has since spread throughout much of South America and into the Caribbean. Throughout North America, H. armigera surveys are ongoing to detect any incursions. Each trap is capable of capturing hundreds of native Helicoverpa zea (Boddie). The two species cannot be separated without genitalic dissection or molecular methods. A ddPCR assay is currently used to screen large trap samples, but this equipment is relatively uncommon and expensive. Here, we optimized a newly designed assay for accurate and repeatable detection of H. armigera in bulk samples across both ddPCR and less costly, and more common, real-time PCR methods. Improvements over previously designed assays were sought through multiple means. Our results suggest bulk real-time PCR assays can be improved through changes in DNA extraction and purification, so that real-time PCR can be substituted for ddPCR in screening projects. While ddPCR remains a more sensitive method for detection of H. armigera in bulk samples, the improvements in assay design, DNA extraction, and purification presented here also enhance assay performance over previous protocols.

19.
J Virol Methods ; 293: 114163, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864854

RESUMEN

In terms of infectious diseases caused by a variety of microorganisms, the ability to promptly and accurately identify the causative agents is the first step on the path to all types of effective management of such infections. Among the various factors that are affecting global bee health, viruses have often been linked to honey bee colony losses and they pose a serious threat to the fraction of agriculture that depends on the service of pollinators. Over the past few decades, PCR-based molecular methods have provided powerful tools for rapid, specific, and sensitive detection and the quantification of difficult-to-grow pathogenic microorganisms such as viruses in honey bees. However, PCR-based methods require nucleic acid extraction and purification, which can be quite laborious and time-consuming and they involve the use of organic solvents and chaotropic agents like phenol and chloroform which are volatile and highly toxic. In response, we developed a novel and non-sacrificial method for detecting viral infections in honey bees. As little as 1 µl of hemolymph was collected from adult workers, larvae, and queens of bee colonies by puncturing the soft inter-tergal integument between the second and third dorsal tergum with a fine glass capillary. The hemolymph was then diluted and subjected to RT-PCR analysis directly. The puncture wound caused by the glass capillary was found to heal automatically and rapidly without any trouble and the lifespan of the experimental workers remained unaffected. Using this method, we detected multiple viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV), and Sacbrood virus (SBV) in infected bees. Furthermore, expressed transcripts that indicate the induction of innate immune response to the virus infections were also detected in the hemolymph of infected bees. The simplicity and cost-effectiveness of this innovative approach will allow it to be a valuable, time-saving, safer, and more environmentally friendly contribution to bee disease management programs.


Asunto(s)
Virus ARN , Virosis , Virus , Agricultura , Animales , Abejas , Virus ARN/genética , Virosis/diagnóstico , Virosis/veterinaria
20.
PeerJ ; 9: e12195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631319

RESUMEN

The fall armyworm, Spodoptera frugiperda, is a polyphagous global pest with a preference for gramineous crops such as corn, sorghum and pasture grasses. This species is comprised of two morphologically identical but genetically distinct host strains known as the corn and rice strains, which can complicate pest management approaches. Two molecular markers are commonly used to differentiate between strains, however, discordance between these markers can lead to inconclusive strain identification. Here, we used double digest restriction site associated DNA sequencing to identify diagnostic single nucleotide polymorphisms (SNPs) with alleles unique to each strain. We then used these strain-specific SNPs to develop four real-time PCR based TaqMan assays to rapidly and reliably differentiate between strains and interstrain hybrids. These assays provide a new tool for differentiating between strains in field-collected samples, facilitating future studies on strain population dynamics and interstrain hybridization rates. Understanding the basic ecology of S. frugiperda strains is necessary to inform future management strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA