Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(3): 033601, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905333

RESUMEN

The generation of photon pairs in quantum dots is in its nature deterministic. However, efficient extraction of photon pairs from the high index semiconductor material requires engineering of the photonic environment. We report on a micropillar device with 69.4(10)% efficiency that features broadband operation suitable for extraction of photon pairs. Opposing the approaches that rely solely on Purcell enhancement to realize the enhancement of the extraction efficiency, our solution exploits a suppression of the emission into the modes other than the cavity mode. Furthermore, the design of the device can be further optimized to allow for an extraction efficiency of 85%.

2.
Opt Express ; 29(3): 4174-4180, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771002

RESUMEN

We introduce a scalable photonic platform that enables efficient generation of entangled photon pairs from a semiconductor quantum dot. Our system, which is based on a self-aligned quantum dot- micro-cavity structure, erases the need for complex steps of lithography and nanofabrication. We experimentally show collection efficiency of 0.17 combined with a Purcell enhancement of up to 1.7. We harness the potential of our device to generate photon pairs entangled in time bin, reaching a fidelity of 0.84(5) with the maximally entangled state. The achieved pair collection efficiency is 4 times larger than the state-of-the art for this application. The device, which theoretically supports pair extraction efficiencies of nearly 0.5 is a promising candidate for the implementation of bright sources of time-bin, polarization- and hyper entangled photon pairs in a straightforward manner.

3.
Sci Adv ; 9(29): eadd7131, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37467336

RESUMEN

The quantification of the entanglement present in a physical system is of paramount importance for fundamental research and many cutting-edge applications. Now, achieving this goal requires either a priori knowledge on the system or very demanding experimental procedures such as full state tomography or collective measurements. Here, we demonstrate that, by using neural networks, we can quantify the degree of entanglement without the need to know the full description of the quantum state. Our method allows for direct quantification of the quantum correlations using an incomplete set of local measurements. Despite using undersampled measurements, we achieve a quantification error of up to an order of magnitude lower than the state-of-the-art quantum tomography. Furthermore, we achieve this result using networks trained using exclusively simulated data. Last, we derive a method based on a convolutional network input that can accept data from various measurement scenarios and perform, to some extent, independently of the measurement device.

4.
Nanoscale ; 12(42): 21821-21831, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33103692

RESUMEN

The fluorescent nitrogen-vacancy (NV) defect in diamond has remarkable photophysical properties, including high photostability which allows stable fluorescence emission for hours; as a result, there has been much interest in using nanodiamonds (NDs) for applications in quantum optics and biological imaging. Such applications have been limited by the heterogeneity of NDs and our limited understanding of NV photophysics in NDs, which is partially due to the lack of sensitive and high-throughput methods for photophysical analysis of NDs. Here, we report a systematic analysis of NDs using two-color wide-field epifluorescence imaging coupled to high-throughput single-particle detection of single NVs in NDs with sizes down to 5-10 nm. By using fluorescence intensity ratios, we observe directly the charge conversion of single NV center (NV- or NV0) and measure the lifetimes of different NV charge states in NDs. We also show that we can use changes in pH to control the main NV charge states in a direct and reversible fashion, a discovery that paves the way for performing pH nanosensing with a non-photobleachable probe.

5.
Nat Cell Biol ; 22(10): 1223-1238, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32989249

RESUMEN

Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.


Asunto(s)
Diferenciación Celular , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Metilación de ADN , Elementos de Facilitación Genéticos , Células Madre Pluripotentes/citología , Animales , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Humanos , Ratones , Fosforilación , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal
6.
ACS Omega ; 4(16): 16715-16723, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646216

RESUMEN

Nanodiamond synthesized by the detonation method is a composite of sp3/sp2 carbon structures; amorphous and disordered-sp2 carbons populate the surface of a sp3 diamond core lattice. Because of the production process, various elemental impurities such as N, O, H, and so forth are inherent in interstitial sites or the surface carbon (sp2/amorphous) network. Herein, the reaction dynamics on the surface of ultradisperse diamond (UDD) due to the surface transformation or reconstruction during annealing in vacuum with temperatures ranging from ambient to 800 °C is described. In situ measurement of Fourier transform infrared spectroscopic analysis shows that low-temperature (<500 °C) annealing of UDD in vacuum results in isonitrile/isocyanide (-N=C:) and nitrile functionalization (-C≡N) on the surface. At temperatures ∼500 °C, the surface hydrogenation of UDD is initiated. During annealing at 780-800 °C, the nitrile group (-C≡N) is reduced to the primary amine (NH2), and isonitrile (-N=C:) turns it to be in the saturated () structure. On exposure to air, the obtained isonitrile is transformed to an N-formyl derivative (Aryl/R-NH-CHO) structure via hydrolysis. This study provides a fundamental insight into the surface reactive profile of UDD which could lead to facile surface functionalization properties and their applications in various fields such as biomedical, biosensing, drug delivery, epoxy materials process, tribology, and possibly in cyano (-C≡N/-N=C:) chemistry.

7.
ACS Omega ; 3(11): 16099-16104, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458247

RESUMEN

In this paper, the controlled production of high-quality metal-free diamond nanoparticles is demonstrated. Milling with tempered steel is shown to leave behind iron oxide contamination which is difficult to remove. Milling with SiN alleviates this issue but generates more nondiamond carbon. Thus, the choice of milling materials is critically determined by the acceptable contaminants in the ultimate application. The removal of metal impurities, present in all commercially available nanoparticles, will open new possibilities toward the production of customized diamond nanoparticles, covering the most demanding quantum applications.

8.
Nanoscale ; 9(34): 12549-12555, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28820208

RESUMEN

In this paper, the origin of positive zeta potential exhibited by nanodiamond particles is explained. Positive zeta potentials in nano-structured carbons can be explained by the presence of graphitic planes at the surface, which leave oxygen-free Lewis sites and so promotes the suppression of acidic functional groups. Electron Microscopy and Raman Spectroscopy have been used to show that positive zeta potential of nanodiamond is only exhibited in the presence of sp2 carbon at the surface.

9.
ACS Omega ; 2(10): 7275-7280, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457302

RESUMEN

The measurement of ζ potential of Ga-face and N-face gallium nitride has been carried out as a function of pH. Both of the faces show negative ζ potential in the pH range 5.5-9. The Ga-face has an isoelectric point at pH 5.5. The N-face shows a more negative ζ potential due to larger concentration of adsorbed oxygen. The ζ potential data clearly showed that H-terminated diamond seed solution at pH 8 will be optimal for the self-assembly of a monolayer of diamond nanoparticles on the GaN surface. The subsequent growth of thin diamond films on GaN seeded with H-terminated diamond seeds produced fully coalesced films, confirming a seeding density in excess of 1011 cm-2. This technique removes the requirement for a low thermal conduction seeding layer like silicon nitride on GaN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA