Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cytotherapy ; 20(2): 245-261, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29274773

RESUMEN

BACKGROUND AIMS: Human umbilical cord blood (HUCB) is an important source of stem cells for therapy of hematopoietic disorders and is a potential therapy for various neurological disorders, including traumatic brain injury (TBI). The expression of nerve growth factor (NGF) and its receptors TrkA, p75NTR and α9ß1 integrin on an HUCB CD45+ pan-hematopoietic subpopulation was investigated in the context of its neurotherapeutic potential after TBI. METHODS: NGF and its receptors were detected on CD45+ cells by reverse transcriptase polymerase chain reaction, flow cytometry analysis and confocal microscopy. CD45+ cells were stimulated by TBI brain extracts, and NGF levels were measured by enzyme-linked immunosorbent assay. TBI mice were divided into six groups for xenogeneic intravenous transplantation, 1 day post-trauma, with 1 × 106 CD45+ cells untreated or treated with the anti-NGF neutralizing antibody K252a, a TrkA antagonist; VLO5, an α9ß1 disintegrin; or negative (vehicle) and positive (NGF) controls. RESULTS: The HUCB CD45+ subpopulation constitutively expresses NGF and its receptors, mainly TrkA and p75NTR and minor levels of α9ß1. In vitro experiments provided evidence that trauma-related mediators from brain extracts of TBI mice induced release of NGF from HUCB CD45+ cell cultures. HUCB CD45+ cells induced a neurotherapeutic effect in TBI mice, abrogated by cell treatment with either anti-NGF antibody or K252a, but not VLO5. CONCLUSIONS: These findings strengthen the role of NGF and its TrkA receptor in the HUCB CD45+ subpopulation's neurotherapeutic effect. The presence of neurotrophin receptors in the HUCB CD45+ pan-hematopoietic subpopulation may explain the neuroprotective effect of cord blood in therapy of a variety of neurological disorders.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Factor de Crecimiento Nervioso/uso terapéutico , Animales , Lesiones Traumáticas del Encéfalo/patología , Quimiocina CCL3/metabolismo , Trasplante de Células Madre Hematopoyéticas , Humanos , Interleucina-10/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones Endogámicos C57BL , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Extractos de Tejidos
2.
Biochim Biophys Acta Gen Subj ; 1861(3): 615-623, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28063984

RESUMEN

BACKGROUND: Peptide and protein toxins are essential tools to dissect and probe the biology of their target receptors. Venoms target vital physiological processes to evoke pain. Snake venoms contain various factors with the ability to evoke, enhance and sustain pain sensation. While a number of venom-derived toxins were shown to directly target TRPV1 channels expressed on somatosensory nerve terminals to evoke pain response, such toxins were yet to be identified in snake venoms. METHODS: We screened Echis coloratus saw-scaled viper venom's protein fractions isolated by reversed phase HPLC for their ability to activate TRPV1 channels. To this end, we employed heterologous systems to analyze TRPV1 and NGF pathways by imaging and electrophysiology, combined with molecular biology, biochemical, and pharmacological tools. RESULTS: We identified TRPV1 activating proteins in the venom of Echis coloratus that produce a channel-dependent increase in intracellular calcium and outwardly rectifying currents in neurons and heterologous systems. Interestingly, channel activation was not mediated by any of its known toxin binding sites. Moreover, although NGF neurotropic activity was detected in this venom, TRPV1 activation was independent of NGF receptors. CONCLUSIONS: Echis coloratus venom contains proteins with the ability to directly activate TRPV1. This activity is independent of the NGF pathway and is not mediated by known TRPV1 toxins' binding sites. GENERAL SIGNIFICANCE: Our results could facilitate the discovery of new toxins targeting TRPV1 to enhance current understanding of this receptor activation mechanism. Furthermore, the findings of this study provide insight into the mechanism through which snakes' venom elicit pain.


Asunto(s)
Proteínas/metabolismo , Canales Catiónicos TRPV/metabolismo , Venenos de Víboras/metabolismo , Viperidae/metabolismo , Animales , Sitios de Unión/fisiología , Calcio/metabolismo , Línea Celular , Células HEK293 , Humanos , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Toxinas Biológicas/metabolismo
3.
Br Med Bull ; 104: 7-19, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22988303

RESUMEN

INTRODUCTION: Neural stem cells (NSCs) from specific brain areas or developed from progenitors of different sources are of therapeutic potential for neurodegenerative diseases. SOURCES OF DATA: Treatment strategies involve the (i) transplantation of exogenous NSCs; (ii) pharmacological modulations of endogenous NSCs and (iii) modulation of endogenous NSCs via the transplantation of exogenous NSCs. AREAS OF AGREEMENT: There is a consensus about the therapeutic potential of transplanted NSCs. The ability of NSCs to home into areas of central nervous system injury allows their delivery by intravenous injection. There is also a general agreement about the neuroprotective mechanisms of NSCs involving a 'bystander effect'. AREAS OF CONTROVERSY: Individual laboratories may be using phenotypically diverse NSCs, since these cells have been differentiated by a variety of neurotrophins and/or cultured on different ECM proteins, therefore differing in the expression of neuronal markers. GROWING POINTS: Optimization of the dose, delivery route, timing of administration of NSCs, their interactions with the immune system and combination therapies in conjunction with tissue engineered neural prostheses are under investigation. AREAS TIMELY FOR DEVELOPING RESEARCH: In-depth understanding of the biological properties of NSCs, including mechanisms of therapy, safety, efficacy and elimination from the organism. These areas are central for further use in cell therapy. CAUTIONARY NOTE: As long as critical safety and efficacy issues are not resolved, we need to be careful in translating NSC therapy from animal models to patients.


Asunto(s)
Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/terapia , Neurogénesis , Encéfalo/metabolismo , Efecto Espectador , Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/cirugía , Enfermedades del Sistema Nervioso Central/terapia , Humanos , Células-Madre Neurales/fisiología , Trasplante de Células Madre/métodos
4.
Exp Neurol ; 338: 113604, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453212

RESUMEN

CCR5 and CXCR4 are structurally related chemokine receptors that belong to the superfamily of G-protein coupled receptors through which the HIV virus enters and infects cells. Both receptors are also related to HIV-associated neurocognitive disorders that include difficulties in concentration and memory, impaired executive functions, psychomotor slowing, depression and irritability, which are also hallmarks of the long-term sequelae of TBI. Moreover, A growing body of evidence attributes negative influences to CCR5 activation on cognition, particularly after stroke and traumatic brain injury (TBI). Here we investigated the effect of their blockage on motor and cognitive functions, on brain tissue loss and preservation and on some of the biochemical pathways involved. We examined the effect of maraviroc, a CCR5 antagonist used in HIV patients as a viral entry inhibitor, and of plerixafor (AMD3100), a CXCR4 antagonist used in cancer patients as an immune-modulator, on mice subjected to closed head injury (CHI). Mice were treated with maraviroc or plerixafor after CHI for the following 4 or 5 days, respectively. Neurobehavior was assessed according to the Neurological Severity Score; cognitive tests were performed by using the Y-maze, Barnes maze and the novel object recognition test; anxiety was evaluated with the open field test. The mice were sacrificed and brain tissues were collected for Western blot, pathological and immunohistochemical analyses. Both drugs enhanced tissue preservation in the cortex, hippocampus, periventricular areas, corpus callosum and striatum, and reduced astrogliosis)GFAP expression). They also increased the levels of synaptic cognition-related signaling molecules such as phosphorylated NR1 and CREB, and the synaptic plasticity protein PSD95. Both treatments also enhanced the expression of CCR5 and CXCR4 on different brain cell types. In summary, the beneficial effects of blocking CCR5 and CXCR4 after CHI suggest that the drugs used in this study, both FDA approved and in clinical use, should be considered for translational research in TBI patients.


Asunto(s)
Bencilaminas/farmacología , Lesiones Traumáticas del Encéfalo , Encéfalo/efectos de los fármacos , Ciclamas/farmacología , Maraviroc/farmacología , Recuperación de la Función/efectos de los fármacos , Animales , Antagonistas de los Receptores CCR5/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Receptores CCR5/metabolismo , Receptores CXCR4/antagonistas & inhibidores
5.
J Neurotrauma ; 38(14): 2003-2017, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33256497

RESUMEN

Recently, chemokine receptor CC chemokine receptor 5 (CCR5) was found to be a negative modulator of learning and memory. Its inhibition improved outcome after stroke and traumatic brain injury (TBI). To better understand its role after TBI and establish therapeutic strategies, we investigated the effect of reduced CCR5 signaling as a neuroprotective strategy and of the temporal changes of CCR5 expression after TBI in different brain cell types. To silence CCR5 expression, ccr5 short hairpin RNA (shRNA) or dsred shRNA (control) was injected into the cornu ammonis (CA) 1 and CA3 regions of the hippocampus 2 weeks before induction of closed-head injury in mice. Animals were then monitored for 32 days and euthanized at different time points to assess lesion area, inflammatory components of the glial response (immunohistochemistry; IHC), cytokine levels (enzyme-linked immunosorbent array), and extracellular signal-regulated kinase (ERK) phosphorylation (western blot). Fluorescence-activated cell sorting (FACS) analysis was performed to study post-injury temporal changes of CCR5 and C-X-C motif chemokine receptor 4 (CXCR4) expression in cortical and hippocampal cell populations (neurons, astrocytes, and microglia). Phosphorylation of the N-methyl-d-aspartate subunit 1 (NR1) subunit of N-methyl-d-aspartate (western blot) and cAMP-response-element-binding protein (CREB; IHC) were also assessed. The ccr5 shRNA mice displayed reduced lesion area, dynamic alterations in levels of inflammation-related CCR5 ligands and cytokines, and higher levels of phosphorylated ERK. The ccr5 shRNA also reduced astrocytosis in the lesioned and sublesioned cortex. FACS analysis revealed increased cortical CCR5 and CXCR4 expression in CD11b-positive cells, astrocytes, and neurons, which was most evident in cells expressing both receptors, at 3 and 11 days post-injury. The lowest levels of phosphorylated NR1 and phosphorylated CREB were found at day 3 post-injury, suggesting that this is the critical time point for therapeutic intervention.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Receptores CCR5/fisiología , Receptores CXCR4/fisiología , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Recuperación de la Función , Factores de Tiempo
6.
J Mol Neurosci ; 64(2): 185-199, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29249007

RESUMEN

Human umbilical cord blood (HUCB) transplantation has become an alternative cell therapy for hematological and oncological malignancies in the clinic and is considered for neurological disorders. The heterogeneity in the content of the different stem and progenitor cells composing HUCB mononuclear cells (MNC) may influence their engraftment and neurotherapeutic effect. We hypothesized that CD45 pan-hematopoietic marker expression is heterogeneous in MNC, and therefore, CD45+ subpopulation enrichment for neurotherapy may provide a tool to overcome cellular variance in different HUCB units. We employed an immunomagnetic separation method to isolate and characterize HUCB CD45+ pan-hematopoietic subpopulation and to investigate whether the vaginal or cesarean deliveries influence their neurotherapeutic effect in a traumatic brain injury (TBI) mouse model. Adult C57BL/6J male mice were subjected to moderate TBI and intravenously xenotransplanted with 1 × 106 CD45+ cells derived from either vaginal or cesarean HUCB units. A large heterogeneity in the expression of CD45 marker in MNC, both in vaginal and cesarean HUCB units, was found, regardless of the number of live births. A higher expression of hematopoietic markers was found in the CD45+ subpopulation while low expressional levels of typical mesenchymal markers were detected. Neurotherapeutic effects, evaluated with an established neurological severity score and novel object recognition test, indicated improved functional motor and memory recovery and found independent of delivery type. Cytokine analysis in extracts of TBI brain cortices indicated an acute immunomodulatory effect by HUCB CD45+ subpopulation upon xenotransplantation. These results may provide insights to CD45 marker as a predictor of HUCB units' quality for neurotherapy in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Células Madre Hematopoyéticas/metabolismo , Trasplante de Células Madre/métodos , Adulto , Animales , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Femenino , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Humanos , Inmunofenotipificación/métodos , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Methods Mol Biol ; 1727: 251-259, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29222787

RESUMEN

The avian chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development. Therefore, the models of chicken and quail assays represent robust experimental platforms to study angiogenesis, which reflects perturbation of the entire vascular tree. This experimental approach, when combined with fractal morphometry, is sensitive to changes in vascular branching pattern and density. Nerve growth factor is a neurotrophin promoting angiogenesis in CAM models. Here, we provide a detailed protocol of the quail CAM, shell-less model, to study nerve growth factor effects on blood capillary sprouting. The quail CAM assay may be beneficial in investigations of cellular and molecular aspects of neurotrophin-induced angiogenesis and for developing novel anti-angiogenesis and anticancer therapies.


Asunto(s)
Membrana Corioalantoides/efectos de los fármacos , Neovascularización Fisiológica , Factor de Crecimiento Nervioso/farmacología , Animales , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/citología , Fractales , Codorniz , Técnicas de Cultivo de Tejidos
8.
Methods Mol Biol ; 1727: 239-250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29222786

RESUMEN

Nerve growth factor (NGF) is a neurotrophin promoting survival, proliferation, differentiation, and neuroprotection in the embryonal and adult nervous system. NGF also induces angiogenic effects in the cardiovascular system, which may be beneficial in engineering new blood vessels and for developing novel anti-angiogenesis therapies for cancer. Angiogenesis is a cellular process characterized by a number of events, including endothelial cell migration, invasion, and assembly into capillaries. In vitro endothelial tube formation assays are performed using primary human umbilical vein endothelial cells, human aortic endothelial cells, and other human or rodent primary endothelial cells isolated from the vasculature of both tumors and normal tissues. Immortalized endothelial cell lines are also used for these assays. When seeded onto Matrigel, these cells reorganize to create tubelike structure, which may be used as models for studying some aspects of in vitro angiogenesis. Image acquisition by light and fluorescence microscopy and/or quantification of fluorescently labeled cells can be carried out manually or digitally, using commercial software and automated image processing. Here we detail materials, procedure, assay conditions, and cell labeling for quantification of endothelial cell tube formation. This model can be applied to study cellular and molecular mechanisms by which NGF or other neurotrophins promote angiogenesis. This model may also be useful for the development of potential angiogenic and/or anti-angiogenic drugs targeting NGF receptors.


Asunto(s)
Células Endoteliales/ultraestructura , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Fisiológica/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Imagen Molecular
9.
Cell Signal ; 27(6): 1225-36, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25748048

RESUMEN

Direct interaction of α9ß1 integrin with nerve growth factor (NGF) has been previously reported to induce pro-proliferative and pro-survival activities of non-neuronal cells. We investigated participation of p75(NTR) in α9ß1 integrin-dependent cellular response to NGF stimulation. Using selective transfection of glioma cell lines with these receptors, we showed a strong, cation-independent association of α9 integrin subunit with p75(NTR) on the cellular membrane by selective immunoprecipitation experiments. The presence of the α9/p75(NTR) complex increases NGF-dependent cell adhesion, proliferation and migration. Other integrin subunits including ß1 were not found in complex with p75(NTR). FRET analysis indicated that p75(NTR) and α9 integrin subunit are not closely associated through their cytoplasmic domains, most probably because of the molecular interference with other cytoplasmic proteins such as paxillin. Interaction of α9ß1 integrin with another ligand, VCAM-1 was not modulated by the p75(NTR). α9/p75(NTR) complex elevated NGF-dependent activation of MAPK Erk1/2 arty for integrin that may create active complexes with other types of receptors belonging to the TNF superfamily.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Integrinas/metabolismo , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Inmunohistoquímica , Integrinas/química , Integrinas/genética , Ratones , Microscopía Confocal , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/aislamiento & purificación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Paxillin/metabolismo , Unión Proteica , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/química , Receptores de Factor de Crecimiento Nervioso/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
10.
J Neurotrauma ; 31(16): 1405-16, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24640955

RESUMEN

Treatment of traumatic brain injury (TBI) is still an unmet need. Cell therapy by human umbilical cord blood (HUCB) has shown promising results in animal models of TBI and is under evaluation in clinical trials. HUCB contains different cell populations but to date, only mesenchymal stem cells have been evaluated for therapy of TBI. Here we present the neurotherapeutic effect, as evaluated by neurological score, using a single dose of HUCB-derived mononuclear cells (MNCs) upon intravenous (IV) administration one day post-trauma in a mouse model of closed head injury (CHI). Delayed (eight days post-trauma) intracerebroventricular administration of MNCs showed improved neurobehavioral deficits thereby extending the therapeutic window for treating TBI. Further, we demonstrated for the first time that HUCB-derived pan-hematopoietic CD45 positive (CD45(+)) cells, isolated by magnetic sorting and characterized by expression of CD45 and CD11b markers (96-99%), improved the neurobehavioral deficits upon IV administration, which persisted for 35 days. The therapeutic effect was in a direct correlation to a reduction in the lesion volume and decreased by pre-treatment of the cells with anti-human-CD45 antibody. At the site of brain injury, 1.5-2 h after transplantation, HUCB-derived cells were identified by near infrared scanning and immunohistochemistry using anti-human-CD45 and anti-human-nuclei antibodies. Nerve growth factor and vascular endothelial growth factor levels were differentially expressed in both ipsilateral and contralateral brain hemispheres, thirty-five days after CHI, measured by enzyme-linked immunosorbent assay. These findings indicate the neurotherapeutic potential of HUCB-derived CD45(+) cell population in a mouse model of TBI and propose their use in the clinical setting of human TBI.


Asunto(s)
Lesiones Encefálicas/terapia , Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Recuperación de la Función , Animales , Separación Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Antígenos Comunes de Leucocito/inmunología , Masculino , Ratones
11.
Transpl Immunol ; 27(4): 184-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22801052

RESUMEN

Formation of donor-recipient mixed chimerism after nonmyeloablative conditioning allows co-existence of donor and recipient hematopoietic stem cells, with solid organ allograft tolerance and less likeliness of graft versus host development. Using a post-transplant bronchiolitis obliterans murine model, we aimed to test the hypothesis that allograft preservation after mixed chimerism formation is dependent on the presence of a functional Fas ligand (FasL) on donor hematopoietic cells. To form mixed chimerism, two aliquots of 30 × 10(6) whole bone marrow cells (BMC) from either wild-type C57BL/6 in one group, or transgenic gld mice with mutant FasL (d = 0 and 2+) in the other were used, with both groups receiving intravenous busulfan (10mg/kg) on d-1 and intraperitoneal cyclophosphamide (200mg/kg) on d+1. Tracheal allografts obtained from C57BL/6 mice were implanted into recipient BALB/c mice subcutaneously on d = 0. Tracheal allografts were harvested at d+28 post-transplant and were evaluated by histopathology. Mixed chimerism formation was detected in wild type C57BL/6 whole BMC recipients, which was accompanied by tracheal allograft acceptance with near normal structure at d+28 post implantation. However, in recipients of FasL mutant whole BMC, neither mixed chimerism formation nor tracheal allograft acceptance was obtained. We thus conclude that bone marrow cells lacking functional FasL molecules could not be engrafted in allogeneic recipients to form stable mixed chimerism after nonmyeloablative conditioning, thus not allowing tracheal allograft acceptance.


Asunto(s)
Células de la Médula Ósea/inmunología , Proteína Ligando Fas/genética , Proteína Ligando Fas/inmunología , Quimera por Trasplante/inmunología , Acondicionamiento Pretrasplante/métodos , Tolerancia al Trasplante/inmunología , Animales , Trasplante de Células Madre Hematopoyéticas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Mutación , Donantes de Tejidos , Tráquea/patología , Tráquea/trasplante , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA