Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Comput Chem ; 45(15): 1247-1253, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38348951

RESUMEN

This work reports an efficient density-fitting implementation of the density-based basis-set correction (DBBSC) method in the MOLPRO software. This method consists in correcting the energy calculated by a wave-function method with a given basis set by an adapted basis-set correction density functional incorporating the short-range electron correlation effects missing in the basis set, resulting in an accelerated convergence to the complete-basis-set limit. Different basis-set correction density-functional approximations are explored and the complementary-auxiliary-basis-set single-excitation correction is added. The method is tested on a benchmark set of reaction energies at the second-order Møller-Plesset (MP2) level and a comparison with the explicitly correlated MP2-F12 method is provided. The results show that the DBBSC method greatly accelerates the basis convergence of MP2 reaction energies, without reaching the accuracy of the MP2-F12 method but with a lower computational cost.

2.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38958166

RESUMEN

This paper presents the first implementation of a coupling between advanced wavefunction theories and molecular density functional theory (MDFT). This method enables the modeling of solvent effect into quantum mechanical (QM) calculations by incorporating an electrostatic potential generated by solvent charges into the electronic Hamiltonian. Solvent charges are deduced from the spatially and angularly dependent solvent particle density. Such a density is obtained through the minimization of the functional associated with the molecular mechanics (MM) Hamiltonian describing the interaction between the fluid particles. The introduced QM/MDFT framework belongs to QM/MM family of methods, but its originality lies in the use of MDFT as the MM solver, offering two main advantages. First, its functional formulation makes it competitive with respect to sampling-based molecular mechanics. Second, it preserves a molecular-level description lost in macroscopic continuum approaches. The excited state properties of water and formaldehyde molecules solvated into water have been computed at the selected configuration interaction (SCI) level. The excitation energies and dipole moments have been compared with experimental data and previous theoretical work. A key finding is that using the Hartree-Fock method to describe the solute allows for predicting the solvent charge around the ground state with sufficient precision for the subsequent SCI calculations of excited states. This significantly reduces the computational cost of the described procedure, paving the way for the study of more complex molecules.

3.
J Chem Phys ; 158(23)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37338026

RESUMEN

The basis-set correction method based on density-functional theory consists in correcting the energy calculated by a wave-function method with a given basis set by a density functional. This basis-set correction density functional incorporates the short-range electron correlation effects missing in the basis set. This results in accelerated basis convergences of ground-state energies to the complete-basis-set limit. In this work, we extend the basis-set correction method to a linear-response formalism for calculating excited-state energies. We give the general linear-response equations as well as the more specific equations for configuration-interaction wave functions. As a proof of concept, we apply this approach to the calculations of excited-state energies in a one-dimensional two-electron model system with harmonic potential and a Dirac-delta electron-electron interaction. The results obtained with full-configuration-interaction wave functions expanded in a basis of Hermite functions and a local-density-approximation basis-set correction functional show that the present approach does not help in accelerating the basis convergence of excitation energies. However, we show that it significantly accelerates basis convergences of excited-state total energies.

4.
J Chem Phys ; 159(11)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732558

RESUMEN

In this work, we develop a mathematical framework for a selected configuration interaction (SCI) algorithm within a bi-orthogonal basis for transcorrelated (TC) calculations. The bi-orthogonal basis used here serves as the equivalent of the standard Hartree-Fock (HF) orbitals. However, within the context of TC, it leads to distinct orbitals for the left and right vectors. Our findings indicate that the use of such a bi-orthogonal basis allows for a proper definition of the frozen core approximation. In contrast, the use of HF orbitals results in bad error cancellations for ionization potentials and atomization energies (AE). Compared to HF orbitals, the optimized bi-orthogonal basis significantly reduces the positive part of the second-order energy (PT2), thereby facilitating the use of standard extrapolation techniques of hermitian SCI. While we did not observe a significant improvement in the convergence of the SCI algorithm, this is largely due to the use in this work of a simple three-body correlation factor introduced in a recent study. This correlation factor, which depends only on atomic parameters, eliminates the need for re-optimization of the correlation factor for molecular systems, making its use straightforward and user-friendly. Despite the simplicity of this correlation factor, we were able to achieve accurate results on the AE of a series of 14 molecules on a triple-zeta basis. We also successfully broke a double bond until the full dissociation limit while maintaining the size consistency property. This work thus demonstrates the potential of the BiO-TC-SCI approach in handling complex molecular systems.

5.
J Chem Phys ; 159(14)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37811825

RESUMEN

The core valence separation (CVS) approximation is the most employed strategy to prevent the variational collapse of standard wave function optimization when attempting to compute electronic states bearing one or more electronic vacancies in core orbitals. Here, we explore the spurious consequences of this approximation on the properties of the computed core hole states. We especially focus on the less studied case of double core hole (DCH) states, whose spectroscopic interest has recently been rapidly growing. We show that the CVS error leads to a systematic underestimation of DCH energies, a property in stark contrast with the case of single core hole states. We highlight that the CVS error can then be interpreted as an over relaxation effect and design a new correction strategy adapted to these specificities.

6.
J Chem Phys ; 156(17): 174101, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525643

RESUMEN

The present work proposes an approach to obtain a basis-set correction based on density-functional theory (DFT) for the computation of molecular properties in wave-function theory (WFT). This approach allows one to accelerate the basis-set convergence of any energy derivative of a non-variational WFT method, generalizing previous works on the DFT-based basis-set correction where either only ground-state energies could be computed with non-variational wave functions [Loos et al., J. Phys. Chem. Lett. 10, 2931 (2019)] or properties could be computed as expectation values over variational wave functions [Giner et al., J. Chem. Phys. 155, 044109 (2021)]. This work focuses on the basis-set correction of dipole moments in coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)], which is numerically tested on a set of 14 molecules with dipole moments covering two orders of magnitude. As the basis-set correction relies only on Hartree-Fock densities, its computational cost is marginal with respect to the one of the CCSD(T) calculations. Statistical analysis of the numerical results shows a clear improvement of the basis convergence of the dipole moment with respect to the usual CCSD(T) calculations.

7.
J Chem Phys ; 156(4): 044113, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35105076

RESUMEN

We re-examine the recently introduced basis-set correction theory based on density-functional theory, which consists of correcting the basis-set incompleteness error of wave-function methods using a density functional. We use a one-dimensional model Hamiltonian with delta-potential interactions, which has the advantage of making easier to perform a more systematic analysis than for three-dimensional Coulombic systems while keeping the essence of the slow basis convergence problem of wave-function methods. We provide some mathematical details about the theory and propose a new variant of basis-set correction, which has the advantage of being suited to the development of an adapted local-density approximation. We show, indeed, how to develop a local-density approximation for the basis-set correction functional, which is automatically adapted to the basis set employed, without resorting to range-separated density-functional theory as in previous studies, but using instead a finite uniform electron gas whose electron-electron interaction is projected on the basis set. The work puts the basis-set correction theory on firmer ground and provides an interesting strategy for the improvement of this approach.

8.
J Chem Phys ; 157(13): 134107, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36209011

RESUMEN

In this work, we present an extension of popular selected configuration interaction (SCI) algorithms to the Transcorrelated (TC) framework. Although we used in this work the recently introduced one-parameter correlation factor [E. Giner, J. Chem. Phys. 154, 084119 (2021)], the theory presented here is valid for any correlation factor. Thanks to the formalization of the non-Hermitian TC eigenvalue problem as a search of stationary points for a specific functional depending on both left- and right-functions, we obtain a general framework, allowing for different choices for both the selection criterion in SCI and the second order perturbative correction to the energy. After numerical investigations on different second-row atomic and molecular systems in increasingly large basis sets, we found that taking into account the non-Hermitian character of the TC Hamiltonian in the selection criterion is mandatory to obtain a fast convergence of the TC energy. In addition, selection criteria based on either the first order coefficient or the second order energy lead to significantly different convergence rates, which is typically not the case in the usual Hermitian SCI. Regarding the convergence of the total second order perturbation energy, we find that the quality of the left-function used in the equations strongly affects the quality of the results. Within the near-optimal algorithm proposed here, we find that the SCI expansion in the TC framework converges faster than the usual SCI in terms of both the basis set and the number of Slater determinants.

9.
J Chem Phys ; 156(23): 234108, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732534

RESUMEN

In this work, we investigate the performance of a recently proposed transcorrelated (TC) approach based on a single-parameter correlation factor [E. Giner, J. Chem. Phys. 154, 084119 (2021)] for systems involving more than two electrons. The benefit of such an approach relies on its simplicity as efficient numerical-analytical schemes can be set up to compute the two- and three-body integrals occurring in the effective TC Hamiltonian. To obtain accurate ground state energies within a given basis set, the present TC scheme is coupled to the recently proposed TC-full configuration interaction quantum Monte Carlo method [Cohen et al., J. Chem. Phys. 151, 061101 (2019)]. We report ground state total energies on the Li-Ne series, together with their first cations, computed with increasingly large basis sets and compare to more elaborate correlation factors involving electron-electron-nucleus coordinates. Numerical results on the Li-Ne ionization potentials show that the use of the single-parameter correlation factor brings on average only a slightly lower accuracy (1.2 mH) in a triple-zeta quality basis set with respect to a more sophisticated correlation factor. However, already using a quadruple-zeta quality basis set yields results within chemical accuracy to complete basis set limit results when using this novel single-parameter correlation factor. Calculations on the H2O, CH2, and FH molecules show that a similar precision can be obtained within a triple-zeta quality basis set for the atomization energies of molecular systems.

10.
J Chem Phys ; 154(8): 084119, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639725

RESUMEN

The present work introduces a new form of explicitly correlated factor in the context of the transcorrelated methods. The new correlation factor is obtained from the r12 ≈ 0 mathematical analysis of the transcorrelated Hamiltonian, and its analytical form is obtained such that the leading order in 1/r12 of the scalar part of the effective two-electron potential reproduces the long-range interaction of the range-separated density functional theory. The resulting correlation factor exactly imposes the cusp and is tuned by a unique parameter µ, which controls both the depth of the coulomb hole and its typical range in r12. The transcorrelated Hamiltonian obtained with such a new correlation factor has a straightforward analytical expression depending on the same parameter µ, and its physical contents continuously change by varying µ: One can change from a non-divergent repulsive Hamiltonian at large µ to a purely attractive one at small µ. We investigate the convergence of the ground state eigenvalues and right eigenvectors of such a new transcorrelated Hamiltonian as a function of the basis set and as a function of µ on a series of two-electron systems. We found that the convergence toward the complete basis set is much faster for quite a wide range of values of µ. We also propose a specific value of µ, which essentially reproduces the results obtained with the frozen Gaussian geminal introduced by Ten-no [Chem. Phys. Lett. 330, 169 (2000)].

11.
J Chem Phys ; 155(4): 044109, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34340379

RESUMEN

This work provides a self-consistent extension of the recently proposed density-based basis-set correction method for wave function electronic-structure calculations [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. In contrast to the previously used approximation where the basis-set correction density functional was a posteriori added to the energy from a wave-function calculation, here the energy minimization is performed including the basis-set correction. Compared to the non-self-consistent approximation, this allows one to lower the total energy and change the wave function under the effect of the basis-set correction. This work addresses two main questions: (i) What is the change in total energy compared to the non-self-consistent approximation and (ii) can we obtain better properties, namely, dipole moments, with the basis-set corrected wave functions. We implement the present formalism with two different basis-set correction functionals and test it on different molecular systems. The main results of the study are that (i) the total energy lowering obtained by the self-consistent approach is extremely small, which justifies the use of the non-self-consistent approximation, and (ii) the dipole moments obtained from the basis-set corrected wave functions are improved, being already close to their complete basis-set values with triple-zeta basis sets. Thus, the present study further confirms the soundness of the density-based basis-set correction scheme.

12.
J Chem Phys ; 155(20): 204104, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34852493

RESUMEN

The semistochastic heat-bath configuration interaction method is a selected configuration interaction plus perturbation theory method that has provided near-full configuration interaction (FCI) levels of accuracy for many systems with both single- and multi-reference character. However, obtaining accurate energies in the complete basis-set limit is hindered by the slow convergence of the FCI energy with respect to basis size. Here, we show that the recently developed basis-set correction method based on range-separated density functional theory can be used to significantly speed up basis-set convergence in SHCI calculations. In particular, we study two such schemes that differ in the functional used and apply them to transition metal atoms and monoxides to obtain total, ionization, and dissociation energies well converged to the complete-basis-set limit within chemical accuracy.

13.
J Chem Phys ; 152(21): 214106, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505167

RESUMEN

We develop relativistic short-range exchange energy functionals for four-component relativistic range-separated density-functional theory using a Dirac-Coulomb Hamiltonian in the no-pair approximation. We show how to improve the short-range local-density approximation exchange functional for large range-separation parameters by using the on-top exchange pair density as a new variable. We also develop a relativistic short-range generalized-gradient approximation exchange functional that further increases the accuracy for small range-separation parameters. Tests on the helium, beryllium, neon, and argon isoelectronic series up to high nuclear charges show that the latter functional gives exchange energies with a maximal relative percentage error of 3%. The development of this exchange functional represents a step forward for the application of four-component relativistic range-separated density-functional theory to chemical compounds with heavy elements.

14.
J Chem Phys ; 153(12): 124117, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003731

RESUMEN

The recently developed semistochastic heat-bath configuration interaction (SHCI) method is a systematically improvable selected configuration interaction plus perturbation theory method capable of giving essentially exact energies for larger systems than is possible with other such methods. We compute SHCI atomization energies for 55 molecules that have been used as a test set in prior studies because their atomization energies are known from experiment. Basis sets from cc-pVDZ to cc-pV5Z are used, totaling up to 500 orbitals and a Hilbert space of 1032 Slater determinants for the largest molecules. For each basis, an extrapolated energy well within chemical accuracy (1 kcal/mol or 1.6 mHa/mol) of the exact energy for that basis is computed using only a tiny fraction of the entire Hilbert space. We also use our almost exact energies to benchmark energies from the coupled cluster method with single, double, and perturbative triple excitations. The energies are extrapolated to the complete basis set limit and compared to the experimental atomization energies. The extrapolations are done both without and with a basis-set correction based on density-functional theory. The mean absolute deviations from experiment for these extrapolations are 0.46 kcal/mol and 0.51 kcal/mol, respectively. Orbital optimization methods used to obtain improved convergence of the SHCI energies are also discussed.

15.
J Chem Phys ; 153(17): 174107, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33167659

RESUMEN

By combining density-functional theory (DFT) and wave function theory via the range separation (RS) of the interelectronic Coulomb operator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions. In particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction known as configuration interaction using a perturbative selection made iteratively (CIPSI), a scheme that we label RS-DFT-CIPSI. One of the take-home messages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant expansions than CIPSI, especially for small basis sets. Indeed, as the CIPSI component of RS-DFT-CIPSI is relieved from describing the short-range part of the correlation hole around the electron-electron coalescence points, the number of determinants in the trial wave function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation. Importantly, by performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mimicking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization. Considering the 55 atomization energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of µ = 0.5 bohr-1 provides effective error cancellations as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical systems.

16.
J Chem Phys ; 152(17): 174104, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32384859

RESUMEN

We extend to strongly correlated molecular systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the electron-electron Coulomb interaction projected in the finite basis set. This enables the use of RSDFT-type complementary density functionals to recover the dominant part of the short-range correlation effects missing in this finite basis set. To study both weak and strong correlation regimes, we consider the potential energy curves of the H10, N2, O2, and F2 molecules up to the dissociation limit, and we explore various approximations of complementary functionals fulfilling two key properties: spin-multiplet degeneracy (i.e., independence of the energy with respect to the spin projection Sz) and size consistency. Specifically, we investigate the dependence of the functional on different types of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy. Quantitatively, we show that the basis-set correction reaches chemical accuracy on atomization energies with triple-ζ quality basis sets for most of the systems studied here. In addition, the present basis-set incompleteness correction provides smooth potential energy curves along the whole range of internuclear distances.

17.
J Chem Phys ; 150(8): 084103, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823761

RESUMEN

We introduce an approximation to the short-range correlation energy functional with multideterminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density gradient, and the on-top pair density, which locally interpolates between the standard Perdew-Burke-Ernzerhof correlation functional at a vanishing range-separation parameter and the known exact asymptotic expansion at a large range-separation parameter. When combined with (selected) configuration-interaction calculations for the long-range wave function, this approximation gives accurate dissociation energy curves of the H2, Li2, and Be2 molecules and thus appears as a promising way to accurately account for static correlation in range-separated density-functional theory.

18.
J Chem Phys ; 151(14): 144118, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615253

RESUMEN

By combining extrapolated selected configuration interaction (sCI) energies obtained with the Configuration Interaction using a Perturbative Selection made Iteratively algorithm with the recently proposed short-range density-functional correction for basis-set incompleteness [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)], we show that one can get chemically accurate vertical and adiabatic excitation energies with, typically, augmented double-ζ basis sets. We illustrate the present approach on various types of excited states (valence, Rydberg, and double excitations) in several small organic molecules (methylene, water, ammonia, carbon dimer, and ethylene). The present study clearly evidences that special care has to be taken with very diffuse excited states where the present correction does not catch the radial incompleteness of the one-electron basis set.

19.
J Chem Phys ; 149(6): 064103, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30111155

RESUMEN

Selected configuration interaction (sCI) methods including second-order perturbative corrections provide near full CI (FCI) quality energies with only a small fraction of the determinants of the FCI space. Here, we introduce both a state-specific and a multi-state sCI method based on the configuration interaction using a perturbative selection made iteratively (CIPSI) algorithm. The present method revises the reference (internal) space under the effect of its interaction with the outer space via the construction of an effective Hamiltonian, following the shifted-Bk philosophy of Davidson and co-workers. In particular, the multi-state algorithm removes the storage bottleneck of the effective Hamiltonian via a low-rank factorization of the dressing matrix. Illustrative examples are reported for the state-specific and multi-state versions.

20.
J Chem Phys ; 149(19): 194301, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30466264

RESUMEN

The present work proposes to use density-functional theory (DFT) to correct for the basis-set error of wave-function theory (WFT). One of the key ideas developed here is to define a range-separation parameter which automatically adapts to a given basis set. The derivation of the exact equations are based on the Levy-Lieb formulation of DFT, which helps us to define a complementary functional which corrects uniquely for the basis-set error of WFT. The coupling of DFT and WFT is done through the definition of a real-space representation of the electron-electron Coulomb operator projected on a one-particle basis set. Such an effective interaction has the particularity to coincide with the exact electron-electron interaction in the limit of a complete basis set, and to be finite at the electron-electron coalescence point when the basis set is incomplete. The non-diverging character of the effective interaction allows one to define a mapping with the long-range interaction used in the context of range-separated DFT and to design practical approximations for the unknown complementary functional. Here, a local-density approximation is proposed for both full-configuration-interaction (FCI) and selected configuration-interaction approaches. Our theory is numerically tested to compute total energies and ionization potentials for a series of atomic systems. The results clearly show that the DFT correction drastically improves the basis-set convergence of both the total energies and the energy differences. For instance, a sub kcal/mol accuracy is obtained from the aug-cc-pVTZ basis set with the method proposed here when an aug-cc-pV5Z basis set barely reaches such a level of accuracy at the near FCI level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA