Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(4): 950-63, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813616

RESUMEN

A new level of chromosome organization, topologically associating domains (TADs), was recently uncovered by chromosome conformation capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model's predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation.


Asunto(s)
Cromosomas/química , Transcripción Genética , Inactivación del Cromosoma X , Animales , Cromatina/química , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones , Modelos Biológicos , Modelos Moleculares , ARN Largo no Codificante/metabolismo
2.
Nature ; 604(7906): 571-577, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418676

RESUMEN

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.


Asunto(s)
Cromosomas , Elementos de Facilitación Genéticos , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Genómica , Mamíferos/genética , Regiones Promotoras Genéticas/genética
3.
Mol Cell ; 77(4): 688-708, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32001106

RESUMEN

Rapidly developing technologies have recently fueled an exciting era of discovery in the field of chromosome structure and nuclear organization. In addition to chromosome conformation capture (3C) methods, new alternative techniques have emerged to study genome architecture and biological processes in the nucleus, often in single or living cells. This sets an unprecedented stage for exploring the mechanisms that link chromosome structure and biological function. Here we review popular as well as emerging approaches to study chromosome organization, focusing on the contribution of complementary methodologies to our understanding of structures revealed by 3C methods and their biological implications, and discuss the next technical and conceptual frontiers.


Asunto(s)
Cromosomas de los Mamíferos/química , Animales , Núcleo Celular/genética , Reparación del ADN , Momento de Replicación del ADN , Técnicas Genéticas , Modelos Genéticos , Análisis de la Célula Individual , Transcripción Genética
4.
Mol Cell ; 77(2): 352-367.e8, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31759823

RESUMEN

cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.


Asunto(s)
Secuencia Conservada/genética , ARN Largo no Codificante/genética , Cromosoma X/genética , Animales , Línea Celular , Elementos de Facilitación Genéticos/genética , Ratones , Regiones Promotoras Genéticas/genética , ARN sin Sentido/genética , Elementos Silenciadores Transcripcionales/genética , Transcripción Genética/genética
5.
Nature ; 593(7858): 289-293, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33854237

RESUMEN

Fundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Posicionamiento de Cromosoma , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Genoma de los Insectos/genética , Conformación Molecular , Animales , Inmunoprecipitación de Cromatina , Cromosomas de Insectos/química , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Desarrollo Embrionario/genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ
6.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502750

RESUMEN

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , Comunicación , Expresión Génica , Genoma , Ratones , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética
7.
Mol Cell ; 68(3): 615-625.e9, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056324

RESUMEN

RNA degradation plays a fundamental role in regulating gene expression. In order to characterize the spatiotemporal dynamics of RNA turnover in single cells, we developed a fluorescent biosensor based on dual-color, single-molecule RNA imaging that allows intact transcripts to be distinguished from stabilized degradation intermediates. Using this method, we measured mRNA decay in single cells and found that individual degradation events occur independently within the cytosol and are not enriched within processing bodies. We show that slicing of an mRNA targeted for endonucleolytic cleavage by the RNA-induced silencing complex can be observed in real time in living cells. This methodology provides a framework for investigating the entire life history of individual mRNAs from birth to death in single cells.


Asunto(s)
Microscopía Fluorescente , Estabilidad del ARN , ARN Mensajero/metabolismo , Imagen Individual de Molécula/métodos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Células HeLa , Humanos , Cinética , Microscopía por Video , Modelos Genéticos , ARN Mensajero/genética , Transfección
8.
Bioinformatics ; 38(10): 2970-2972, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561161

RESUMEN

MOTIVATION: Live-cell microscopy has become an essential tool for analyzing dynamic processes in various biological applications. Thereby, high-throughput and automated tracking analyses allow the simultaneous evaluation of large numbers of objects. However, to critically assess the influence of individual objects on calculated summary statistics, and to detect heterogeneous dynamics or possible artifacts, such as misclassified or -tracked objects, a direct mapping of gained statistical information onto the actual image data would be necessary. RESULTS: We present VisuStatR as a platform independent software package that allows the direct visualization of time-resolved summary statistics of morphological characteristics or motility dynamics onto raw images. The software contains several display modes to compare user-defined summary statistics and the underlying image data in various levels of detail. AVAILABILITY AND IMPLEMENTATION: VisuStatR is a free and open-source R-package, containing a user-friendly graphical-user interface and is available via GitHub at https://github.com/grrchrr/VisuStatR/ under the MIT+ license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microscopía , Programas Informáticos , Artefactos , Concesión de Licencias
9.
Nucleic Acids Res ; 49(13): 7292-7297, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34197605

RESUMEN

Detection of diffraction-limited spots in single-molecule microscopy images is traditionally performed with mathematical operators designed for idealized spots. This process requires manual tuning of parameters that is time-consuming and not always reliable. We have developed deepBlink, a neural network-based method to detect and localize spots automatically. We demonstrate that deepBlink outperforms other state-of-the-art methods across six publicly available datasets containing synthetic and experimental data.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Programas Informáticos , Microscopía
10.
Nature ; 535(7613): 575-9, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27437574

RESUMEN

X-chromosome inactivation (XCI) involves major reorganization of the X chromosome as it becomes silent and heterochromatic. During female mammalian development, XCI is triggered by upregulation of the non-coding Xist RNA from one of the two X chromosomes. Xist coats the chromosome in cis and induces silencing of almost all genes via its A-repeat region, although some genes (constitutive escapees) avoid silencing in most cell types, and others (facultative escapees) escape XCI only in specific contexts. A role for Xist in organizing the inactive X (Xi) chromosome has been proposed. Recent chromosome conformation capture approaches have revealed global loss of local structure on the Xi chromosome and formation of large mega-domains, separated by a region containing the DXZ4 macrosatellite. However, the molecular architecture of the Xi chromosome, in both the silent and expressed regions,remains unclear. Here we investigate the structure, chromatin accessibility and expression status of the mouse Xi chromosome in highly polymorphic clonal neural progenitors (NPCs) and embryonic stem cells. We demonstrate a crucial role for Xist and the DXZ4-containing boundary in shaping Xi chromosome structure using allele-specific genome-wide chromosome conformation capture (Hi-C) analysis, an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) and RNA sequencing. Deletion of the boundary disrupts mega-domain formation, and induction of Xist RNA initiates formation of the boundary and the loss of DNA accessibility. We also show that in NPCs, the Xi chromosome lacks active/inactive compartments and topologically associating domains (TADs), except around genes that escape XCI. Escapee gene clusters display TAD-like structures and retain DNA accessibility at promoter-proximal and CTCF-binding sites. Furthermore, altered patterns of facultative escape genes indifferent neural progenitor clones are associated with the presence of different TAD-like structures after XCI. These findings suggest a key role for transcription and CTCF in the formation of TADs in the context of the Xi chromosome in neural progenitors.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Alelos , Animales , Sitios de Unión , Factor de Unión a CCCTC , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas de los Mamíferos/química , Cromosomas de los Mamíferos/genética , Células Madre Embrionarias/metabolismo , Femenino , Silenciador del Gen , Masculino , Ratones , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Análisis de Secuencia , Transcripción Genética , Cromosoma X/química , Cromosoma X/genética , Inactivación del Cromosoma X/genética
11.
Genome Res ; 27(3): 479-490, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28057745

RESUMEN

Understanding how regulatory sequences interact in the context of chromosomal architecture is a central challenge in biology. Chromosome conformation capture revealed that mammalian chromosomes possess a rich hierarchy of structural layers, from multi-megabase compartments to sub-megabase topologically associating domains (TADs) and sub-TAD contact domains. TADs appear to act as regulatory microenvironments by constraining and segregating regulatory interactions across discrete chromosomal regions. However, it is unclear whether other (or all) folding layers share similar properties, or rather TADs constitute a privileged folding scale with maximal impact on the organization of regulatory interactions. Here, we present a novel algorithm named CaTCH that identifies hierarchical trees of chromosomal domains in Hi-C maps, stratified through their reciprocal physical insulation, which is a single and biologically relevant parameter. By applying CaTCH to published Hi-C data sets, we show that previously reported folding layers appear at different insulation levels. We demonstrate that although no structurally privileged folding level exists, TADs emerge as a functionally privileged scale defined by maximal boundary enrichment in CTCF and maximal cell-type conservation. By measuring transcriptional output in embryonic stem cells and neural precursor cells, we show that the likelihood that genes in a domain are coregulated during differentiation is also maximized at the scale of TADs. Finally, we observe that regulatory sequences occur at genomic locations corresponding to optimized mutual interactions at the same scale. Our analysis suggests that the architectural functionality of TADs arises from the interplay between their ability to partition interactions and the specific genomic position of regulatory sequences.


Asunto(s)
Algoritmos , Ensamble y Desensamble de Cromatina , Cromosomas/química , Elementos Aisladores , Animales , Células Cultivadas , Cromosomas/genética , Cromosomas/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Modelos Teóricos , Células-Madre Neurales/metabolismo
12.
Nature ; 485(7398): 381-5, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22495304

RESUMEN

In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C) and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.


Asunto(s)
ARN no Traducido/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Diferenciación Celular , ADN Intergénico/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Epigenómica , Femenino , Fibroblastos , Regulación de la Expresión Génica , Histonas/metabolismo , Hibridación Fluorescente in Situ , Masculino , Metilación , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante , Transcriptoma , Cromosoma X/química
13.
Mol Cell ; 37(3): 418-28, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20159560

RESUMEN

A paradigm in transcriptional regulation is that graded increases in transcription factor (TF) concentration are translated into on/off transcriptional responses by cooperative TF binding to adjacent sites. Digital transcriptional responses underlie the definition of anatomical boundaries during development. Here we show that NF-kappaB, a TF controlling inflammation and immunity, is conversely an analog transcriptional regulator that uses clustered binding sites noncooperatively. We observed that increasing concentrations of NF-kappaB are translated into gradual increments in gene transcription. We provide a thermodynamic interpretation of the experimental observations by combining quantitative measurements and a minimal physical model of an NF-kappaB-dependent promoter. We demonstrate that NF-kappaB binds independently to adjacent sites to promote additive RNA Pol II recruitment and graded transcriptional outputs. These findings reveal an alternative mode of operation of clustered TF binding sites, which might function in biological conditions where the transcriptional output is proportional to the strength of an environmental input.


Asunto(s)
Ambiente , Regulación de la Expresión Génica/fisiología , Modelos Genéticos , FN-kappa B/fisiología , Sitios de Unión , Línea Celular , Humanos , FN-kappa B/metabolismo , ARN Polimerasa II/metabolismo , Termodinámica
14.
Biophys J ; 110(6): 1234-45, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028634

RESUMEN

Experiments based on chromosome conformation capture have shown that mammalian genomes are partitioned into topologically associating domains (TADs), within which the chromatin fiber preferentially interacts. TADs may provide three-dimensional scaffolds allowing genes to contact their appropriate distal regulatory DNA sequences (e.g., enhancers) and thus to be properly regulated. Understanding the cell-to-cell and temporal variability of the chromatin fiber within TADs, and what determines them, is thus of great importance to better understand transcriptional regulation. We recently described an equilibrium polymer model that can accurately predict cell-to-cell variation of chromosome conformation within single TADs, from chromosome conformation capture-based data. Here we further analyze the conformational and energetic properties of our model. We show that the chromatin fiber within TADs can easily fluctuate between several conformational states, which are hierarchically organized and are not separated by important free energy barriers, and that this is facilitated by the fact that the chromatin fiber within TADs is close to the onset of the coil-globule transition. We further show that in this dynamic state the properties of the chromatin fiber, and its contact probabilities in particular, are determined in a nontrivial manner not only by site-specific interactions between strongly interacting loci along the fiber, but also by nonlocal correlations between pairs of contacts. Finally, we use live-cell experiments to measure the dynamics of the chromatin fiber in mouse embryonic stem cells, in combination with dynamical simulations, and predict that conformational changes within one TAD are likely to occur on timescales that are much shorter than the duration of one cell cycle. This suggests that genes and their regulatory elements may come together and disassociate several times during a cell cycle. These results have important implications for transcriptional regulation as they support the concept of highly dynamic interactions driven by a complex interplay between site-specific interactions and the intrinsic biophysical properties of the chromatin fiber.


Asunto(s)
Cromatina/química , Algoritmos , Animales , Análisis por Conglomerados , Sitios Genéticos , Ratones , Conformación de Ácido Nucleico , Probabilidad
15.
Genome Res ; 23(12): 2066-77, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002784

RESUMEN

Chromosome conformation capture approaches have shown that interphase chromatin is partitioned into spatially segregated Mb-sized compartments and sub-Mb-sized topological domains. This compartmentalization is thought to facilitate the matching of genes and regulatory elements, but its precise function and mechanistic basis remain unknown. Cohesin controls chromosome topology to enable DNA repair and chromosome segregation in cycling cells. In addition, cohesin associates with active enhancers and promoters and with CTCF to form long-range interactions important for gene regulation. Although these findings suggest an important role for cohesin in genome organization, this role has not been assessed on a global scale. Unexpectedly, we find that architectural compartments are maintained in noncycling mouse thymocytes after genetic depletion of cohesin in vivo. Cohesin was, however, required for specific long-range interactions within compartments where cohesin-regulated genes reside. Cohesin depletion diminished interactions between cohesin-bound sites, whereas alternative interactions between chromatin features associated with transcriptional activation and repression became more prominent, with corresponding changes in gene expression. Our findings indicate that cohesin-mediated long-range interactions facilitate discrete gene expression states within preexisting chromosomal compartments.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Timocitos/metabolismo , Animales , Factor de Unión a CCCTC , Ciclo Celular/genética , Cromosomas de los Mamíferos , Proteínas de Unión al ADN , Dosificación de Gen , Genoma , Modelos Lineales , Ratones , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Cohesinas
16.
Nat Genet ; 56(6): 1203-1212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816647

RESUMEN

Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.


Asunto(s)
Adenosina Trifosfatasas , Factor de Unión a CCCTC , Cromatina , Proteínas Represoras , Factores de Transcripción , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Animales , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Cromatina/metabolismo , Cromatina/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Unión Proteica , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Sitios de Unión
17.
Bioinformatics ; 28(21): 2843-4, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22923296

RESUMEN

SUMMARY: The R/Bioconductor package HiTC facilitates the exploration of high-throughput 3C-based data. It allows users to import and export 'C' data, to transform, normalize, annotate and visualize interaction maps. The package operates within the Bioconductor framework and thus offers new opportunities for future development in this field. AVAILABILITY AND IMPLEMENTATION: The R package HiTC is available from the Bioconductor website. A detailed vignette provides additional documentation and help for using the package.


Asunto(s)
Mapeo Cromosómico/métodos , Mapeo Restrictivo/métodos , Programas Informáticos , Animales , Mapeo Cromosómico/instrumentación , Cromosomas Humanos Par 14/química , Cromosomas Humanos Par 14/genética , Presentación de Datos , Humanos , Ratones , Conformación Molecular , Mapeo Restrictivo/instrumentación
18.
Curr Opin Genet Dev ; 80: 102052, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37257410

RESUMEN

The spatiotemporal control of gene expression in complex multicellular organisms relies on noncoding regulatory sequences such as enhancers, which activate transcription of target genes often over large genomic distances. Despite the advances in the identification and characterization of enhancers, the principles and mechanisms by which enhancers select and control their target genes remain largely unknown. Here, we review recent interdisciplinary and quantitative approaches based on emerging techniques that aim to address open questions in the field, notably how regulatory information is encoded in the DNA sequence, how this information is transferred from enhancers to promoters, and how these processes are regulated in time.


Asunto(s)
Elementos de Facilitación Genéticos , Genómica , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Secuencia de Bases
19.
Cell Rep ; 42(9): 113074, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37676766

RESUMEN

To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.


Asunto(s)
Linfocitos B , Inmunoglobulinas , Recombinación V(D)J/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Células Precursoras de Linfocitos B
20.
Methods Mol Biol ; 2301: 259-265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34415540

RESUMEN

In the absence of a clear molecular understanding of the mechanism that stabilizes specific contacts in interphasic chromatin, we resort to the principle of maximum entropy to build a polymeric model based on the Hi-C data of the specific system one wants to study. The interactions are set by an iterative Monte Carlo algorithm to reproduce the average contacts summarized by the Hi-C map. The study of the ensemble of conformations generated by the algorithm can report a much richer set of information than the experimental map alone, including colocalization of multiple sites, fluctuations of the contacts, and kinetical properties.


Asunto(s)
Cromosomas , Entropía , Conformación Molecular , Método de Montecarlo , Polímeros , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA