Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arch Microbiol ; 202(5): 1085-1095, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32034425

RESUMEN

The current study aimed at the determination of the impact of obesity on the salivary microbiome in adolescents. Sixty subjects ranging 14-17 years old were enrolled (obese: n = 30-50% females, and normal weight: n = 30-50% females). Stimulated saliva was collected for denaturing gradient gel electrophoresis (DGGE) band patterns and massive 16S rRNA gene sequencing using the Ion Torrent platform. Overall, data analysis revealed that male subjects harbored a higher diverse salivary microbiome, defined by a significant higher richness (32.48 versus 26.74) and diversity (3.36 versus 3.20), higher Simpson values (0.96 versus 0.95) and distinct bacterial community structure considering either sex or condition (p < 0.05). Bacterial community fingerprinting analysis in human saliva showed a positive correlation with increased body mass index (BMI) in adolescents. Veillonella, Haemophilus and Prevotella occurrence was found to be affected by BMI, whereas Neisseria and Rothia occurrence was significantly impacted by sex in obese subjects. Our findings suggest that male and female adolescents may harbor a naturally distinct salivary microbiota and that obesity may specifically have an impact on their oral bacterial community. The potential dysbiotic oral microbiome in obese adolescents raises new insights on the etiology and prevention of future conditions in these populations.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota/genética , Obesidad/microbiología , Saliva/microbiología , Adolescente , Bacterias/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Femenino , Haemophilus/aislamiento & purificación , Humanos , Masculino , Micrococcaceae/aislamiento & purificación , Neisseria/aislamiento & purificación , Prevotella/aislamiento & purificación , ARN Ribosómico 16S/genética , Veillonella/aislamiento & purificación
2.
Bone ; 176: 116886, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37634682

RESUMEN

X-linked hypophosphatemia (XLH) is an inherited disorder caused by inactivating mutations in the PHEX gene leading to renal phosphate wasting, rickets and osteomalacia. XLH is also associated with dentoalveolar mineralization defects in tooth enamel, dentin and cementum, and in alveolar bone, which lead to an increased prevalence of dental abscesses, periodontal disease and tooth loss. Genetic mouse experiments, and deficiencies in XLH patient therapies where treatments do not fully ameliorate mineralization defects, suggest that other pathogenic mechanisms may exist in XLH. The mineralization-inhibiting, secreted extracellular matrix phosphoprotein osteopontin (OPN, gene Spp1) is a substrate for the PHEX enzyme whereby extensive and inactivating degradation of inhibitory OPN by PHEX facilitates mineralization. Conversely, excess OPN accumulation in skeletal and dental tissues - for example in XLH where inactivating mutations in the PHEX gene limit degradation of inhibitory OPN, or as occurs in Fgf23-null mice - contributes to mineralization defects. We hypothesized that Spp1/OPN ablation in Hyp mice (a mouse model for XLH) would reduce dentoalveolar mineralization defects. Immunostaining revealed increased OPN in Hyp vs. wild-type (WT) alveolar bone, particularly in osteocyte lacunocanalicular networks where Hyp mice have characteristic hypomineralized peri-osteocytic lesions (POLs). Micro-computed tomography and histology showed that ablation of Spp1 in Hyp mice (Hyp;Spp1-/-) on a normal diet did not ameliorate bulk defects in enamel, dentin, or alveolar bone. On a high-phosphate diet, both Hyp and Hyp;Spp1-/- mice showed improved mineralization of enamel, dentin, and alveolar bone. Silver staining indicated Spp1 ablation did not improve alveolar or mandibular bone osteocyte POLs in Hyp mice; however, they were normalized by a high-phosphate diet in both Hyp and Hyp;Spp1-/- mice, although inducing increased OPN. Collectively, these data indicate that despite changes in OPN content in the dentoalveolar mineralized tissues, there exist other compensatory mineralization mechanisms that arise from knockout of Spp1/OPN in the Hyp background.


Asunto(s)
Enfermedades Óseas , Calcinosis , Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Animales , Ratones , Osteopontina , Microtomografía por Rayos X , Ratones Noqueados , Fosfatos
3.
Braz Oral Res ; 35: e062, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34133579

RESUMEN

This in vitro study evaluated the impact of TiO2 nanotubes (n-TiO2) incorporated into glass ionomer cement (GIC) on Streptococcus mutans (S. mutans) characteristics at cellular and molecular levels. n-TiO2, synthesized by the alkaline method (20 nm in size), was added to Ketac Molar EasyMix® at 0%, 3%, 5%, and 7% by weight. S. mutans strains were cultured on GIC disks with addition or not of n-TiO2 for 1, 3, and 7 days and the following parameters were assessed: inhibition halo (mm) (n=3/group); cell viability (live/dead) (n=5/group); cell morphology (SEM) (n=3/group); and gene expression by real-time PCR (vicR, covR, gtfB, gtfC, and gtfD) (n=6/group). The data were analyzed by the Kruskal-Wallis test, repeated-measures ANOVA or two-way ANOVA, and Tukey's and Dunn's post-hoc tests (α=0.05). The agar diffusion test showed a higher antibacterial property for 5% n-TiO2 compared with 3% and 7% (p<0.05) with no effect of time (1, 3, and 7 days). The cell number was significantly affected by all n-TiO2 groups, while viability was mostly affected by 3% and 5% n-TiO2, which also affected cell morphology and organization. Real-time PCR demonstrated that n-TiO2 reduced the expression of covR when compared with GIC with no n-TiO2 (p<0.05), with no effect of time, except for 3% n-TiO2 on vicR expression. Within-group and between-group analyses revealed n-TiO2 did not affect mRNA levels of gtfB, gtfC, and gtfD (p>0.05). Incorporation of n-TiO2 at 3% and 5% potentially affected S. mutans viability and the expression of key genes for bacterial survival and growth, improving the anticariogenic properties of GIC.


Asunto(s)
Nanotubos , Streptococcus mutans , Cementos de Ionómero Vítreo/farmacología , Ensayo de Materiales , Titanio , Virulencia
4.
Dent Mater ; 36(3): e85-e92, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32019690

RESUMEN

OBJECTIVES: The aim of this study was to determine the physico-mechanical properties of a high viscosity glass ionomer cement (GIC) reinforced with TiO2 nanotubes (TiO2-nt). METHODS: TiO2-nt was incorporated into the GIC powder components (Ketac Molar EasyMix™) in concentrations of 0% (control group), 3%, 5%, 7% by weight. Compressive strength (n = 10/group), three point bending for flexural strength (n = 18/group), microshear bond strength to dentin and failure mode (n = 20/group), and surface roughness and weight loss before and after brushing simulation (30,000 cycles) (n = 8/group) were evaluated. Data were submitted to Shapiro-Wilk, ANOVA, Tukey and Chi-square tests (α ≤ 0.05). RESULTS: Addition of 5% of TiO2-nt into GIC presented the highest values for compressive strength and differed from the control, 3% and 7% groups (p = 0.023). There were no significant differences in flexural strength (p = 0.107) and surface roughness before and after the dental brushing (p = 0.287) among the groups. GIC added with 5% TiO2-nt showed the lowest weight loss values (p = 0.01), whereas the control, 3% or 5% TiO2-nt groups presented similar microshear bond strength values (p ≥ 0.05). The 5% TiO2-nt group featured higher microshear bond strength than the 7% TiO2-nt group (p = 0.034). Cohesive in material was the most representative failure mode for all groups. SIGNIFICANCE: The incorporation of TiO2-nt did not affect GIC's adhesiveness to dentin, but improved its compressive strength at 5%. Furthermore, TiO2-nt decreased the percentage of weight loss after GIC's surface wear.


Asunto(s)
Recubrimiento Dental Adhesivo , Nanotubos , Cementos de Ionómero Vítreo , Ensayo de Materiales , Propiedades de Superficie , Titanio
5.
J Mol Graph Model ; 76: 429-440, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28779688

RESUMEN

Somatic activating mutations in the GNAQ have been recently associated with several congenital genetic disorders and tumors; however, the molecular mechanism/etiology that leads to GNAQ somatic mosaic mutation are unknown. Here, we reported a case of Sturge-Weber Syndrome (SWS) manifesting cutaneous vascular malformations (hemifacial Port-wine stain), cerebral and ocular vascular abnormalities (including epilepsy and glaucoma) and harboring a c.548G>A (p.R183Q) somatic mosaic mutation in GNAQ. Computational modeling studies were performed to assistant with the comprehension of the functional impact of p.R183Q and p.Q209L mutations in GNAQ, which encodes a G protein subunit alpha q (Gαq). The p.R183Q mutation was predicted to abolish hydrogen bonds between R183 residue and GDP molecule, destabilizing the inactive GDP-bound conformation of the Gαq mutants. Furthermore, replacement of R183 by Q183 residue was predicted to promote conformation changes in protein surface features affecting the switch I region, a key region that undergoes conformational changes triggered by receptor binding during signal transduction. In addition, replacement of Q209 by L209 residue was predicted to affect the molecular interaction between Gαq and Gß subunit, impairing formation of the inactive heterotrimeric complex. These findings, in association with PPI network analysis, indicate that p.R183Q and p.Q209L mutations result in the over-activation of different downstream effectors, which in turn will determine the distinct cell responses and phenotype. These findings bring new insights on molecular etiology of vascular malformations associated to SWS and on different mechanisms underlying hyperactivation of downstream pathways to Gαq.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Relación Estructura-Actividad Cuantitativa , Adulto , Alelos , Sitios de Unión , Niño , Análisis Mutacional de ADN , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Masculino , Modelos Moleculares , Fenotipo , Unión Proteica , Conformación Proteica , Síndrome de Sturge-Weber/diagnóstico , Síndrome de Sturge-Weber/genética
6.
Int J Biomater ; 2017: 7123919, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611845

RESUMEN

The aim of this study was to assess the performance of glass ionomer cement (GIC) added with TiO2 nanotubes. TiO2 nanotubes [3%, 5%, and 7% (w/w)] were incorporated into GIC's (Ketac Molar EasyMix™) powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS), surface roughness (SR), Knoop hardness (SH), fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM) composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α ≤ 0.05). Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC's physical-chemical properties were significantly improved by the addition of 5% TiO2 as compared to 3% and GIC alone. Furthermore, regardless of TiO2 concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2 presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2 groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2 at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.

7.
Braz. oral res. (Online) ; 35: e062, 2021. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1278591

RESUMEN

Abstract This in vitro study evaluated the impact of TiO2 nanotubes (n-TiO2) incorporated into glass ionomer cement (GIC) on Streptococcus mutans (S. mutans) characteristics at cellular and molecular levels. n-TiO2, synthesized by the alkaline method (20 nm in size), was added to Ketac Molar EasyMix® at 0%, 3%, 5%, and 7% by weight. S. mutans strains were cultured on GIC disks with addition or not of n-TiO2 for 1, 3, and 7 days and the following parameters were assessed: inhibition halo (mm) (n=3/group); cell viability (live/dead) (n=5/group); cell morphology (SEM) (n=3/group); and gene expression by real-time PCR (vicR, covR, gtfB, gtfC, and gtfD) (n=6/group). The data were analyzed by the Kruskal-Wallis test, repeated-measures ANOVA or two-way ANOVA, and Tukey's and Dunn's post-hoc tests (α=0.05). The agar diffusion test showed a higher antibacterial property for 5% n-TiO2 compared with 3% and 7% (p<0.05) with no effect of time (1, 3, and 7 days). The cell number was significantly affected by all n-TiO2 groups, while viability was mostly affected by 3% and 5% n-TiO2, which also affected cell morphology and organization. Real-time PCR demonstrated that n-TiO2 reduced the expression of covR when compared with GIC with no n-TiO2 (p<0.05), with no effect of time, except for 3% n-TiO2 on vicR expression. Within-group and between-group analyses revealed n-TiO2 did not affect mRNA levels of gtfB, gtfC, and gtfD (p>0.05). Incorporation of n-TiO2 at 3% and 5% potentially affected S. mutans viability and the expression of key genes for bacterial survival and growth, improving the anticariogenic properties of GIC.


Asunto(s)
Streptococcus mutans , Nanotubos , Titanio , Virulencia , Ensayo de Materiales , Cementos de Ionómero Vítreo/farmacología
8.
Mundo saúde (Impr.) ; 43(2): [326-343], abr., 2019. tab
Artículo en Inglés, Portugués | LILACS | ID: biblio-1054506

RESUMEN

Impact of maternal self-efficacy and associatedfactors on maintaining exclusive breastfeeding in the city of Piracicaba-SP: Cohort study


Impacto da autoeficácia materna e fatores associadosna manutenção do aleitamento materno exclusivo nomunicípio de Piracicaba-SP: Estudo de Coorte


Asunto(s)
Femenino , Humanos , Lactante , Lactancia Materna , Autoeficacia , Destete , Centros de Salud , Política de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA