Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 21(1): 405-413, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33337888

RESUMEN

Two-dimensional (2D) lead halide Ruddlesden-Popper perovskites (RPP) have recently emerged as a prospective material system for optoelectronic applications. Their self-assembled multi quantum-well structure gives rise to the novel interwell energy funnelling phenomenon, which is of broad interests for photovoltaics, light-emission applications, and emerging technologies (e.g., spintronics). Herein, we develop a realistic finite quantum-well superlattice model that corroborates the hypothesis of exciton delocalization across different quantum-wells in RPP. Such delocalization leads to a sub-50 fs coherent energy transfer between adjacent wells, with the efficiency depending on the RPP phase matching and the organic large cation barrier lengths. Our approach provides a coherent and comprehensive account for both steady-state and transient dynamical experimental results in RPPs. Importantly, these findings pave the way for a deeper understanding of these systems, as a cornerstone crucial for establishing material design rules to realize efficient RPP-based devices.

2.
J Am Chem Soc ; 141(40): 15972-15976, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31522501

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) are a new generation of high-performance materials for solar cells and light emitting diodes. Beyond these applications, ferroelectricity and spin-related properties of HOIPs are increasingly attracting interests. The presence of strong spin-orbit coupling, allied with symmetry breaking ensured by remanent polarization, should give rise to Rashba-type splitting of electronic bands in HOIP. However, the report of both ferroelectricity and Rashba effect in HOIP is rare. Here we report the observation of robust ferroelectricity and Rashba effect in two-dimensional Dion-Jacobson perovskites.

3.
Acc Chem Res ; 49(2): 294-302, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26820796

RESUMEN

Lead halide perovskite solar cells are presently the forerunner among the third generation solution-processed photovoltaic technologies. With efficiencies exceeding 20% and low production costs, they are prime candidates for commercialization. Critical insights into their light harvesting, charge transport, and loss mechanisms have been gained through time-resolved optical probes such as femtosecond transient absorption spectroscopy (fs-TAS), transient photoluminescence spectroscopy, and time-resolved terahertz spectroscopy. Specifically, the discoveries of long balanced electron-hole diffusion lengths and gain properties in halide perovskites underpin their significant roles in uncovering structure-function relations and providing essential feedback for materials development and device optimization. In particular, fs-TAS is becoming increasingly popular in perovskite characterization studies, with commercial one-box pump-probe systems readily available as part of a researcher's toolkit. Although TAS is a powerful probe in the study of charge dynamics and recombination mechanisms, its instrumentation and data interpretation can be daunting even for experienced researchers. This issue is exacerbated by the sensitive nature of halide perovskites where the kinetics are especially susceptible to pump fluence, sample preparation and handling and even degradation effects that could lead to disparate conclusions. Nonetheless, with end-users having a clear understanding of TAS's capabilities, subtleties, and limitations, cutting-edge work with deep insights can still be performed using commercial setups as has been the trend for ubiquitous spectroscopy instruments like absorption, fluorescence, and transient photoluminescence spectrometers. Herein, we will first briefly examine the photophysical processes in lead halide perovskites, highlighting their novel properties. Next, we proceed to give a succinct overview of the fundamentals of pump-probe spectroscopy in relation to the spectral features of halide perovskites and their origins. In the process, we emphasize some key findings of seminal photophysical studies and draw attention to the interpretations that remain divergent and the open questions. This is followed by a general description into how we prepare and conduct the TAS characterization of CH3NH3PbI3 thin films in our laboratory with specific discussions into the potential pitfalls and the influence of thin film processing on the kinetics. Lastly, we conclude with our views on the challenges and opportunities from the photophysical perspective for the field and our expectations for systems beyond lead halide perovskites.

4.
Phys Chem Chem Phys ; 18(21): 14701-8, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27184073

RESUMEN

Semiconductors are ubiquitous gain media for coherent light sources. Solution-processed three-dimensional (3D) halide perovskites (e.g., CH3NH3PbI3) with their outstanding room temperature optical gain properties are the latest members of this family. Their two-dimensional (2D) layered perovskite counterparts with natural multiple quantum well structures exhibit strong light-matter interactions and intense excitonic luminescence. However, despite such promising traits, there have been no reports on room temperature optical gain in 2D layered perovskites. Herein, we reveal the challenges towards achieving amplified spontaneous emission (ASE) in the archetypal (C6H5C2H4NH3)2PbI4 (or PEPI) system. Temperature-dependent transient spectroscopy uncovers the dominant free exciton trapping and bound biexciton formation pathways that compete effectively with biexcitonic gain. Phenomenological rate equation modeling predicts a large biexciton ASE threshold of ∼1.4 mJ cm(-2), which is beyond the damage threshold of these materials. Importantly, these findings would rationalize the difficulties in achieving optical gain in 2D perovskites and provide new insights and suggestions for overcoming these challenges.

5.
Nano Lett ; 15(3): 1553-8, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25646561

RESUMEN

Low-temperature solution-processed organic-inorganic halide perovskite CH3NH3PbI3 has demonstrated great potential for photovoltaics and light-emitting devices. Recent discoveries of long ambipolar carrier diffusion lengths and the prediction of the Rashba effect in CH3NH3PbI3, that possesses large spin-orbit coupling, also point to a novel semiconductor system with highly promising properties for spin-based applications. Through circular pump-probe measurements, we demonstrate that highly polarized electrons of total angular momentum (J) with an initial degree of polarization Pini ∼90% (i.e., -30% degree of electron spin polarization) can be photogenerated in perovskites. Time-resolved Faraday rotation measurements reveal photoinduced Faraday rotation as large as 10°/µm at 200 K (at wavelength λ = 750 nm) from an ultrathin 70 nm film. These spin polarized carrier populations generated within the polycrystalline perovskite films, relax via intraband carrier spin-flip through the Elliot-Yafet mechanism. Through a simple two-level model, we elucidate the electron spin relaxation lifetime to be ∼7 ps and that of the hole is ∼1 ps. Our work highlights the potential of CH3NH3PbI3 as a new candidate for ultrafast spin switches in spintronics applications.

6.
Opt Express ; 23(16): 21107-17, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26367961

RESUMEN

Despite the concerted efforts to directly probe the electron-electron (e-e) scattering mediated relaxation process in graphene using transient absorption spectroscopy, the initial sub-10 fs photoexcited carrier relaxation dynamics has remained elusive. Herein, we utilize a simple z-scan approach to elucidate this process and discern its mechanisms in CVD grown single layer graphene using femtosecond laser pulses with temporal pulse widths far longer than the relaxation time. We report the first experimental observation of e-e scattering lifetime shortening with increasing fluence, which had been theoretically predicted. Analysis from two-body Coulombic scattering suggests that Auger processes are essential relaxation channels in single layer graphene. Importantly, our straightforward approach on the graphene model system is applicable to the family of emergent layered materials.

7.
Nat Commun ; 14(1): 2472, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120626

RESUMEN

Coherent optical manipulation of exciton states provides a fascinating approach for quantum gating and ultrafast switching. However, their coherence time for incumbent semiconductors is highly susceptible to thermal decoherence and inhomogeneous broadening effects. Here, we uncover zero-field exciton quantum beating and anomalous temperature dependence of the exciton spin lifetimes in CsPbBr3 perovskite nanocrystals (NCs) ensembles. The quantum beating between two exciton fine-structure splitting (FSS) levels enables coherent ultrafast optical control of the excitonic degree of freedom. From the anomalous temperature dependence, we identify and fully parametrize all the regimes of exciton spin depolarization, finding that approaching room temperature, it is dominated by a motional narrowing process governed by the exciton multilevel coherence. Importantly, our results present an unambiguous full physical picture of the complex interplay of the underlying spin decoherence mechanisms. These intrinsic exciton FSS states in perovskite NCs present fresh opportunities for spin-based photonic quantum technologies.

8.
Nat Commun ; 14(1): 6293, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813878

RESUMEN

Carrier multiplication (CM) holds great promise to break the Shockley-Queisser limit of single junction photovoltaic cells. Despite compelling spectroscopic evidence of strong CM effects in halide perovskites, studies in actual perovskite solar cells (PSCs) are lacking. Herein, we reconcile this knowledge gap using the testbed Cs0.05FA0.5MA0.45Pb0.5Sn0.5I3 system exhibiting efficient CM with a low threshold of 2Eg (~500 nm) and high efficiency of 99.4 ± 0.4%. Robust CM enables an unbiased internal quantum efficiency exceeding 110% and reaching as high as 160% in the best devices. Importantly, our findings inject fresh insights into the complex interplay of various factors (optical and parasitic absorption losses, charge recombination and extraction losses, etc.) undermining CM contributions to the overall performance. Surprisingly, CM effects may already exist in mixed Pb-Sn PSCs but are repressed by its present architecture. A comprehensive redesign of the existing device configuration is needed to leverage CM effects for next-generation PSCs.

9.
Mater Horiz ; 10(2): 536-546, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36426759

RESUMEN

Mixed-dimensional perovskites containing mixtures of organic cations hold great promise to deliver highly stable and efficient solar cells. However, although a plethora of relatively bulky organic cations have been reported for such purposes, a fundamental understanding of the materials' structure, composition, and phase, along with their correlated effects on the corresponding optoelectronic properties and degradation mechanism remains elusive. Herein, we systematically engineer the structures of bulky organic cations to template low-dimensional perovskites with contrasting inorganic framework dimensionality, connectivity, and coordination deformation. By combining X-ray single-crystal structural analysis with depth-profiling XPS, solid-state NMR, and femtosecond transient absorption, it is revealed that not all low-dimensional species work equally well as dopants. Instead, it was found that inorganic architectures with lesser structural distortion tend to yield less disordered energetic and defect landscapes in the resulting mixed-dimensional perovskites, augmented in materials with a longer photoluminescence (PL) lifetime, higher PL quantum yield (up to 11%), improved solar cell performance and enhanced thermal stability (T80 up to 1000 h, unencapsulated). Our study highlights the importance of designing templating organic cations that yield low-dimensional materials with much less structural distortion profiles to be used as additives in stable and efficient perovskite solar cells.

10.
Adv Mater ; 35(25): e2210176, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36943743

RESUMEN

The power conversion efficiency (PCE) of the state-of-the-art large-area slot-die-coated perovskite solar cells (PSCs) is now over 19%, but issues with their stability persist owing to significant intrinsic point defects and a mass of surface imperfections introduced during the fabrication process. Herein, the utilization of a hydrophobic all-organic salt is reported to modify the top surface of large-area slot-die-coated methylammonium (MA)-free halide perovskite layers. Bearing two molecules, each of which is endowed with anchoring groups capable of exhibiting secondary interactions with the perovskite surfaces, the organic salt acts as a molecular lock by effectively binding to both anion and cation vacancies, substantially enhancing the materials' intrinsic stability against different stimuli. It not only reduces the ingression of external species such as oxygen and moisture, but also suppresses the egress of volatile organic components during the thermal stability testing. The treated PSCs demonstrate efficiency of 19.28% (active area of 58.5 cm2 ) and 17.62% (aperture area of 64 cm2 ) for the corresponding mini-module. More importantly, unencapsulated slot-die-coated mini-modules incorporating the all-organic surface modifier show ≈80% efficiency retention after 7500 h (313 days) of storage under 30% relative humidity (RH). They also remarkably retain more than 90% of the initial efficiency for over 850 h while being measured continuously.

11.
J Phys Chem Lett ; 13(31): 7161-7169, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35904326

RESUMEN

Multiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as "efficiency roll-off". The underlying mechanisms are presently an open question. Herein, we explicate the E-field effects on the exciton states in the archetypal MQW perovskite (C6H5C2H4NH3)2PbI4, or PEPI, in a device-like architecture using field-assisted transient spectroscopy and theoretical modeling. The applied E-field results in a complex interplay of spectral blueshifts and enhancement/quenching of the different exciton modes. The former originates from the DC Stark shift, while the latter is attributed to the E-field modulation of the transfer rates between bright/dark exciton modes. Importantly, our findings uncover crucial insights into the photophysical processes under E-field modulation contributing to efficiency roll-off in MQW PeLEDs. Electrical modulation of exciton properties presents exciting possibilities for signal processing devices.

12.
Light Sci Appl ; 10(1): 2, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33386385

RESUMEN

The outstanding optoelectronic performance of lead halide perovskites lies in their exceptional carrier diffusion properties. As the perovskite material dimensionality is reduced to exploit the quantum confinement effects, the disruption to the perovskite lattice, often with insulating organic ligands, raises new questions on the charge diffusion properties. Herein, we report direct imaging of >1 µm exciton diffusion lengths in CH3NH3PbBr3 perovskite nanocrystal (PNC) films. Surprisingly, the resulting exciton mobilities in these PNC films can reach 10 ± 2 cm2 V-1 s-1, which is counterintuitively several times higher than the carrier mobility in 3D perovskite films. We show that this ultralong exciton diffusion originates from both efficient inter-NC exciton hopping (via Förster energy transfer) and the photon recycling process with a smaller yet significant contribution. Importantly, our study not only sheds new light on the highly debated origins of the excellent exciton diffusion in PNC films but also highlights the potential of PNCs for optoelectronic applications.

13.
RSC Adv ; 11(39): 24137-24143, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35479049

RESUMEN

Hybrid organic-inorganic lead halide perovskite nanoparticles are promising candidates for optoelectronic applications. This investigation describes the structural and optical properties of MA x Cs1-x PbBr3 mixed cation colloidal nanoparticles spanning the complete compositional range of Cs substitution. A monotonic progression in the cubic lattice parameter (a) with changes in the Cs+ content confirmed the formation of mixed cation materials. More importantly, time-resolved photoluminescence (TRPL) revealed the optimized 13 mol% Cs nanoparticle composition exhibits the longest charge carrier lifetime and enhancement in radiative pathways. This sample also showed the highest photoluminescence quantum yield (PLQY) of ∼88% and displays ∼100% improvement in the PLQY of pure MAPbBr3 and CsPbBr3. Prototype LEDs fabricated from MA0.87Cs0.13PbBr3 were demonstrated.

14.
Nanoscale ; 13(1): 59-65, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33346310

RESUMEN

Metal lead halide perovskite nanocrystals have emerged as promising candidates for optoelectronic applications. However, the inclusion of toxic lead is a major concern for the commercial viability of these materials. Herein, we introduce a new family of non-toxic reduced dimension Rb2CuX3 (X = Br, Cl) colloidal nanocrystals with one-dimensional crystal structure consisting [CuX4]3- ribbons isolated by Rb+ cations. These nanocrystals were synthesised using a room-temperature method under ambient conditions, which makes them cost effective and scalable. Phase purity quantification was confirmed by Rietveld refinement of powder X-ray diffraction and corroborated by 87Rb MAS NMR technique. Both samples also exhibited high thermal stability up to 500 °C, which is essential for optoelectronic applications. Rb2CuBr3 and Rb2CuCl3 display PL emission peaks at 387 nm and 400 nm with high PLQYs of ∼100% and ∼49%, respectively. Lastly, the first colloidal synthesis of quantum-confined rubidium copper halide-based nanocrystals opens up a new avenue to exploit their optical properties in lighting technology as well as water sterilisation and air purification.

15.
Nat Commun ; 12(1): 5087, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429419

RESUMEN

The creation of pseudo-magnetic fields in strained graphene has emerged as a promising route to investigate intriguing physical phenomena that would be unattainable with laboratory superconducting magnets. The giant pseudo-magnetic fields observed in highly deformed graphene can substantially alter the optical properties of graphene beyond a level that can be feasible with an external magnetic field, but the experimental signatures of the influence of such pseudo-magnetic fields have yet to be unveiled. Here, using time-resolved infrared pump-probe spectroscopy, we provide unambiguous evidence for slow carrier dynamics enabled by the pseudo-magnetic fields in periodically strained graphene. Strong pseudo-magnetic fields of ~100 T created by non-uniform strain in  graphene on nanopillars are found to significantly decelerate the relaxation processes of hot carriers by more than an order of magnitude. Our findings offer alternative opportunities to harness the properties of graphene enabled by pseudo-magnetic fields for optoelectronics and condensed matter physics.

16.
J Phys Chem Lett ; 11(7): 2743-2750, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32183508

RESUMEN

Slow hot carrier cooling in halide perovskites holds the key to the development of hot carrier (HC) perovskite solar cells. For accurate modeling and pragmatic design of HC materials and devices, it is essential that HC temperatures are reliably determined. A common approach involves fitting the high-energy tail of the main photobleaching peak in a transient absorption spectrum with a Maxwell-Boltzmann distribution. However, this approach is problematic because of complications from the overlap of several photophysical phenomena and a lack of consensus in the community on the fitting procedures. Herein, we propose a simple approach that circumvents these challenges. Through tracking the broadband spectral evolution and accounting for bandgap renormalization and spectral line width broadening effects, our method extracts not only accurate and consistent carrier temperatures but also other important parameters such as the quasi-Fermi levels, bandgap renormalization constant, etc. Establishing a reliable method for the carrier temperature determination is a step forward in the study of HCs for next-generation perovskite optoelectronics.

17.
Nat Commun ; 11(1): 2712, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483150

RESUMEN

Amongst the many spectacular properties of hybrid lead halide perovskites, their defect tolerance is regarded as the key enabler for a spectrum of high-performance optoelectronic devices that propel perovskites to prominence. However, the plateauing efficiency enhancement of perovskite devices calls into question the extent of this defect tolerance in perovskite systems; an opportunity for perovskite nanocrystals to fill. Through optical spectroscopy and phenomenological modeling based on the Marcus theory of charge transfer, we uncover the detrimental effect of hot carriers trapping in methylammonium lead iodide and bromide nanocrystals. Higher excess energies induce faster carrier trapping rates, ascribed to interactions with shallow traps and ligands, turning these into potent defects. Passivating these traps with the introduction of phosphine oxide ligands can help mitigate hot carrier trapping. Importantly, our findings extend beyond photovoltaics and are relevant for low threshold lasers, light-emitting devices and multi-exciton generation devices.

18.
ACS Appl Mater Interfaces ; 11(14): 13523-13532, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30854841

RESUMEN

Ruddlesden-Popper (RP) halide perovskites are the new kids on the block for high-performance perovskite photovoltaics with excellent ambient stability. The layered nature of these perovskites offers an exciting possibility of harnessing their ferroelectric property for photovoltaics. Adjacent polar domains in a ferroelectric material allow the spatial separation of electrons and holes. Presently, the structure-function properties governing the ferroelectric behavior of RP perovskites are an open question. Herein, we realize tunable ferroelectricity in 2-phenylethylammonium (PEA) and methylammonium (MA) RP perovskite (PEA)2(MA) n̅-1Pb n̅I3 n̅+1. Second harmonic generation (SHG) confirms the noncentrosymmetric nature of these polycrystalline thin films, whereas piezoresponse force microscopy and polarization-electric field measurements validate the microscopic and macroscopic ferroelectric properties. Temperature-dependent SHG and dielectric constant measurements uncover a phase transition temperature at around 170 °C in these films. Extensive molecular dynamics simulations support the experimental results and identified the correlated reorientation of MA molecules and ion translations as the source of ferroelectricity. Current-voltage characteristics in the dark reveal the persistence of hysteresis in these devices, which has profound implications for light-harvesting and light-emitting applications. Importantly, our findings disclose a viable approach for engineering the ferroelectric properties of RP perovskites that may unlock new functionalities for perovskite optoelectronics.

19.
Sci Adv ; 5(11): eaax3620, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31763450

RESUMEN

Halide perovskites are promising materials for development in hot carrier (HC) solar cells, where the excess energy of above-bandgap photons is harvested before being wasted as heat to enhance device efficiency. Presently, HC separation and transfer processes at higher-energy states remain poorly understood. Here, we investigate the excited state dynamics in CH3NH3PbI3 using pump-push-probe spectroscopy. It has its intrinsic advantages for studying these dynamics over conventional transient spectroscopy, albeit complementary to one another. By exploiting the broad excited-state absorption characteristics, our findings reveal the transfer of HCs from these higher-energy states into bathophenanthroline (bphen), an energy selective organic acceptor far above perovskite's band edges. Complete HC extraction is realized only after overcoming the interfacial barrier formed at the heterojunction, estimated to be between 1.01 and 1.08 eV above bphen's lowest unoccupied molecular orbital level. The insights gained here are essential for the development of a new class of optoelectronics.

20.
Nat Commun ; 10(1): 3456, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371709

RESUMEN

Room-temperature spin-based electronics is the vision of spintronics. Presently, there are few suitable material systems. Herein, we reveal that solution-processed mixed-phase Ruddlesden-Popper perovskite thin-films transcend the challenges of phonon momentum-scattering that limits spin-transfer in conventional semiconductors. This highly disordered system exhibits a remarkable efficient ultrafast funneling of photoexcited spin-polarized excitons from two-dimensional (2D) to three-dimensional (3D) phases at room temperature. We attribute this efficient exciton relaxation pathway towards the lower energy states to originate from the energy transfer mediated by intermediate states. This process bypasses the omnipresent phonon momentum-scattering in typical semiconductors with stringent band dispersion, which causes the loss of spin information during thermalization. Film engineering using graded 2D/3D perovskites allows unidirectional out-of-plane spin-funneling over a thickness of ~600 nm. Our findings reveal an intriguing family of solution-processed perovskites with extraordinary spin-preserving energy transport properties that could reinvigorate the concepts of spin-information transfer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA