Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Methods ; 20(6): 891-897, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37106230

RESUMEN

Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.


Asunto(s)
Lípidos , Proteínas de la Membrana , Espectrometría de Masas/métodos , Transporte Biológico , Lípidos/química , Proteínas de la Membrana/química , Membrana Dobles de Lípidos/química
2.
Biophys J ; 121(7): 1289-1298, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35189106

RESUMEN

Get3/4/5 chaperone complex is responsible for targeting C-terminal tail-anchored membrane proteins to the endoplasmic reticulum. Despite the availability of several crystal structures of independent proteins and partial structures of subcomplexes, different models of oligomeric states and structural organization have been proposed for the protein complexes involved. Here, using native mass spectrometry (Native-MS), coupled with intact dissociation, we show that Get4/5 exclusively forms a tetramer using both Get5/5 and a novel Get4/4 dimerization interface. Addition of Get3 to this leads to a hexameric (Get3)2-(Get4)2-(Get5)2 complex with closed-ring cyclic architecture. We further validate our claims through molecular modeling and mutational abrogation of the proposed interfaces. Native-MS has become a principal tool to determine the state of oligomeric organization of proteins. The work demonstrates that for multiprotein complexes, native-MS, coupled with molecular modeling and mutational perturbation, can provide an alternative route to render a detailed view of both the oligomeric states as well as the molecular interfaces involved. This is especially useful for large multiprotein complexes with large unstructured domains that make it recalcitrant to conventional structure determination approaches.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Espectrometría de Masas , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
3.
Biochem J ; 476(11): 1621-1635, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31097490

RESUMEN

Plant immune responses, including the production of reactive oxygen species (ROS), are triggered when pattern recognition receptors (PRRs) become activated upon detection of microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases are key components of PRR-dependent signaling pathways. In tomato, two such kinases, Pti1a and Pti1b, are important positive regulators of the plant immune response. However, it is unknown how these kinases control plant immunity at the molecular level and how their activity is regulated. To investigate these issues, we used mass spectrometry to search for interactors of Pti1b in Nicotiana benthamiana leaves and identified a PP2C protein phosphatase, referred to as Pic1. An in vitro pull-down assay and in vivo split-luciferase complementation assay verified this interaction. Pti1b was found to autophosphorylate on threonine-233, and this phosphorylation was abolished in the presence of Pic1. An arginine-to-cysteine substitution at position 240 in the Arabidopsis MARIS kinase was previously reported to convert it into a constitutive-active form. The analogous substitution in Pti1b made it resistant to Pic1 phosphatase activity, although it still interacted with Pic1. Treatment of N. benthamiana leaves with the MAMP flg22 induced threonine phosphorylation of Pti1b. The expression of Pic1, but not a phosphatase-inactive variant of this protein, in N. benthamiana leaves greatly reduced ROS production in response to treatment with MAMPs flg22 or csp22. The results indicate that Pic1 acts as a negative regulator by dephosphorylating the Pti1b kinase, thereby interfering with its ability to activate plant immune responses.


Asunto(s)
Inmunidad de la Planta , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Solanum lycopersicum/inmunología , Solanum lycopersicum/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Flagelina/inmunología , Solanum lycopersicum/genética , Fosforilación , Inmunidad de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo
4.
Plant Physiol ; 161(4): 2049-61, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23396834

RESUMEN

HopQ1 (for Hrp outer protein Q), a type III effector secreted by Pseudomonas syringae pv phaseolicola, is widely conserved among diverse genera of plant bacteria. It promotes the development of halo blight in common bean (Phaseolus vulgaris). However, when this same effector is injected into Nicotiana benthamiana cells, it is recognized by the immune system and prevents infection. Although the ability to synthesize HopQ1 determines host specificity, the role it plays inside plant cells remains unexplored. Following transient expression in planta, HopQ1 was shown to copurify with host 14-3-3 proteins. The physical interaction between HopQ1 and 14-3-3a was confirmed in planta using the fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. Moreover, mass spectrometric analyses detected specific phosphorylation of the canonical 14-3-3 binding site (RSXpSXP, where pS denotes phosphoserine) located in the amino-terminal region of HopQ1. Amino acid substitution within this motif abrogated the association and led to altered subcellular localization of HopQ1. In addition, the mutated HopQ1 protein showed reduced stability in planta. These data suggest that the association between host 14-3-3 proteins and HopQ1 is important for modulating the properties of this bacterial effector.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Interacciones Huésped-Patógeno , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Cromatografía Liquida , Secuencia Conservada/genética , Transferencia Resonante de Energía de Fluorescencia , Espectrometría de Masas , Datos de Secuencia Molecular , Phaseolus/metabolismo , Phaseolus/microbiología , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Pseudomonas syringae/patogenicidad , Fracciones Subcelulares/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiología , Virulencia
5.
Front Plant Sci ; 15: 1335830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501137

RESUMEN

HopQ1, a type three effector from Pseudomonas syringae upon phosphorylation coopts plant 14-3-3 proteins to control its stability and subcellular localization. Mass spectrometry of the cytoplasm-restricted effector revealed that HopQ1 already in this subcellular compartment undergoes phosphorylation at serine 51 within the canonical 14-3-3 binding motif and within the second putative 14-3-3 binding site, 24RTPSES29. Our analyses revealed that the stoichiometry of the HopQ1:14-3-3a complex is 1:2 indicating that both binding sites of HopQ1 are involved in the interaction. Notably, 24RTPSES29 comprises a putative nuclear translocation signal (NTS). Although a peptide containing NTS mediates nuclear import of a Cargo protein suggesting its role in the nuclear trafficking of HopQ1, a deletion of 25TPS27 does not change HopQ1 distribution. In contrast, elimination of 14-3-3 binding site, accelerates nuclear trafficking the effector. Collectively, we show that formation of the HopQ1:14-3-3 complex occurs in the host cytoplasm and slows down the effector translocation into the nucleus. These results provide a mechanism that maintains the proper nucleocytoplasmic partitioning of HopQ1, and at the same time is responsible for the relocation of 14-3-3s from the nucleus to cytoplasm in the presence of the effector.

6.
Nat Microbiol ; 8(2): 284-298, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732469

RESUMEN

OmcZ nanowires produced by Geobacter species have high electron conductivity (>30 S cm-1). Of 111 cytochromes present in G. sulfurreducens, OmcZ is the only known nanowire-forming cytochrome essential for the formation of high-current-density biofilms that require long-distance (>10 µm) extracellular electron transport. However, the mechanisms underlying OmcZ nanowire assembly and high conductivity are unknown. Here we report a 3.5-Å-resolution cryogenic electron microscopy structure for OmcZ nanowires. Our structure reveals linear and closely stacked haems that may account for conductivity. Surface-exposed haems and charge interactions explain how OmcZ nanowires bind to diverse extracellular electron acceptors and how organization of nanowire network re-arranges in different biochemical environments. In vitro studies explain how G. sulfurreducens employ a serine protease to control the assembly of OmcZ monomers into nanowires. We find that both OmcZ and serine protease are widespread in environmentally important bacteria and archaea, thus establishing a prevalence of nanowire biogenesis across diverse species and environments.


Asunto(s)
Geobacter , Nanocables , Geobacter/química , Geobacter/metabolismo , Citocromos/metabolismo , Transporte de Electrón , Serina Proteasas/metabolismo
7.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36282247

RESUMEN

Lipid transport proteins at membrane contacts, where organelles are closely apposed, are critical in redistributing lipids from the endoplasmic reticulum (ER), where they are made, to other cellular membranes. Such protein-mediated transfer is especially important for maintaining organelles disconnected from secretory pathways, like mitochondria. We identify mitoguardin-2, a mitochondrial protein at contacts with the ER and/or lipid droplets (LDs), as a lipid transporter. An x-ray structure shows that the C-terminal domain of mitoguardin-2 has a hydrophobic cavity that binds lipids. Mass spectrometry analysis reveals that both glycerophospholipids and free-fatty acids co-purify with mitoguardin-2 from cells, and that each mitoguardin-2 can accommodate up to two lipids. Mitoguardin-2 transfers glycerophospholipids between membranes in vitro, and this transport ability is required for roles both in mitochondrial and LD biology. While it is not established that protein-mediated transfer at contacts plays a role in LD metabolism, our findings raise the possibility that mitoguardin-2 functions in transporting fatty acids and glycerophospholipids at mitochondria-LD contacts.


Asunto(s)
Gotas Lipídicas , Metabolismo de los Lípidos , Mitocondrias , Proteínas Mitocondriales , Proteínas Portadoras/metabolismo , Ácidos Grasos/metabolismo , Glicerofosfolípidos/metabolismo , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo
9.
Front Microbiol ; 9: 1060, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29973916

RESUMEN

Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in common bean (Phaseolus vulgaris). Similar to other pathogenic gram-negative bacteria, it secrets a set of type III effectors into host cells to subvert defense mechanisms. HopQ1 (for Hrp outer protein Q) is one of these type III effectors contributing to virulence of bacteria. Upon delivery into a plant cell, HopQ1 undergoes phosphorylation, binds host 14-3-3 proteins and suppresses defense-related signaling. Some plants however, evolved systems to recognize HopQ1 and respond to its presence and thus to prevent infection. HopQ1 shows homology to Nucleoside Hydrolases (NHs), but it contains a modified calcium binding motif not found in the canonical enzymes. CLuster ANalysis of Sequences (CLANS) revealed that HopQ1 and alike proteins make a distinct group of putative NHs located distantly from the classical enzymes. The HopQ1 - like protein (HLP) group comprises sequences from plant pathogenic bacteria, fungi, and lower plants. Our data suggest that the evolution of HopQ1 homologs in bacteria, fungi, and algae was independent. The location of moss HopQ1 homologs inside the fungal clade indicates a possibility of horizontal gene transfer (HGT) between those taxa. We identified a HLP in the moss Physcomitrella patens. Our experiments show that this protein (referred to as PpHLP) extended by a TTSS signal of HopQ1 promoted P. syringae growth in bean and was recognized by Nicotiana benthamiana immune system. Thus, despite the low sequence similarity to HopQ1 the engineered PpHLP acted as a bacterial virulence factor and displayed similar to HopQ1 virulence properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA