Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(4): 835-848.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31378462

RESUMEN

Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.


Asunto(s)
Codón de Terminación , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Deficiencias en la Proteostasis/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo
2.
J Immunol ; 206(8): 1890-1900, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33731338

RESUMEN

Caseinolytic mitochondrial matrix peptidase proteolytic subunit (CLPP) is a serine protease that degrades damaged or misfolded mitochondrial proteins. CLPP-null mice exhibit growth retardation, deafness, and sterility, resembling human Perrault syndrome, but also display immune system alterations. However, the molecular mechanisms and signaling pathways underlying immunological changes in CLPP-null mice remain unclear. In this study, we report the steady-state activation of type I IFN signaling and antiviral gene expression in CLPP-deficient cells and tissues, resulting in marked resistance to RNA and DNA virus infection. Depletion of the cyclic GMP-AMP (cGAS)-stimulator of IFN genes (STING) DNA sensing pathway reduces steady-state IFN-I signaling and abrogates the broad antiviral phenotype of CLPP-null cells. Moreover, we report that CLPP deficiency leads to mitochondrial DNA (mtDNA) instability and packaging alterations. Pharmacological and genetic approaches to deplete mtDNA or inhibit cytosolic release markedly reduce antiviral gene expression, implicating mtDNA stress as the driver of IFN-I signaling in CLPP-null mice. Our work places the cGAS-STING-IFN-I innate immune pathway downstream of CLPP and may have implications for understanding Perrault syndrome and other human diseases involving CLPP dysregulation.


Asunto(s)
Interferón beta , Nucleotidiltransferasas , Animales , ADN Mitocondrial/genética , Endopeptidasa Clp/genética , Humanos , Interferón beta/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Nucleótidos Cíclicos , Nucleotidiltransferasas/metabolismo , Péptido Hidrolasas
3.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139332

RESUMEN

The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.


Asunto(s)
Endopeptidasa Clp , Pérdida Auditiva , Mitocondrias , Animales , Ratones , Adenosina Trifosfatasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Pérdida Auditiva/genética , Pérdida Auditiva/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Respiración/genética , Biosíntesis de Proteínas/genética
4.
Neurogenetics ; 22(4): 297-312, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34345994

RESUMEN

Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Inmunidad Innata/inmunología , Ácidos Nucleicos/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Citosol/inmunología , Citosol/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/inmunología , Proteínas del Choque Térmico HSP40/inmunología , Ratones , Mitocondrias/genética , Mitocondrias/inmunología , Ácidos Nucleicos/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Factor de Transcripción STAT1/inmunología , Regulación hacia Arriba
5.
Neurobiol Dis ; 152: 105289, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33577922

RESUMEN

Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.


Asunto(s)
Colesterol/biosíntesis , Médula Espinal/patología , Ataxias Espinocerebelosas/patología , Proteinopatías TDP-43/patología , Animales , Ataxina-2 , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones , Médula Espinal/metabolismo , Ataxias Espinocerebelosas/metabolismo , Proteinopatías TDP-43/metabolismo
6.
Neurogenetics ; 21(3): 187-203, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32342250

RESUMEN

Human RNF213, which encodes the protein mysterin, is a known susceptibility gene for moyamoya disease (MMD), a cerebrovascular condition with occlusive lesions and compensatory angiogenesis. Mysterin mutations, together with exposure to environmental trigger factors, lead to an elevated stroke risk since childhood. Mysterin is induced during cell stress, to function as cytosolic AAA+ ATPase and ubiquitylation enzyme. Little knowledge exists, in which context mysterin is needed. Here, we found that genetic ablation of several mitochondrial matrix factors, such as the peptidase ClpP, the transcription factor Tfam, as well as the peptidase and AAA+ ATPase Lonp1, potently induces Rnf213 transcript expression in various organs, in parallel with other components of the innate immune system. Mostly in mouse fibroblasts and human endothelial cells, the Rnf213 levels showed prominent upregulation upon Poly(I:C)-triggered TLR3-mediated responses to dsRNA toxicity, as well as upon interferon gamma treatment. Only partial suppression of Rnf213 induction was achieved by C16 as an antagonist of PKR (dsRNA-dependent protein kinase). Since dysfunctional mitochondria were recently reported to release immune-stimulatory dsRNA into the cytosol, our results suggest that mysterin becomes relevant when mitochondrial dysfunction or infections have triggered RNA-dependent inflammation. Thus, MMD has similarities with vasculopathies that involve altered nucleotide processing, such as Aicardi-Goutières syndrome or systemic lupus erythematosus. Furthermore, in MMD, the low penetrance of RNF213 mutations might be modified by dysfunctions in mitochondria or the TLR3 pathway.


Asunto(s)
Proteasas ATP-Dependientes/genética , Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Endopeptidasa Clp/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Enfermedad de Moyamoya/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular Tumoral , Citosol/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Sistema Inmunológico , Inflamación , Interferón gamma/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Espectrometría de Masas , Ratones , Mutación , Poli I-C , Pliegue de Proteína , Proteoma , ARN/metabolismo , Transcriptoma
7.
EMBO Rep ; 19(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29420235

RESUMEN

Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.


Asunto(s)
Endopeptidasa Clp/genética , Resistencia a la Insulina/genética , Mitocondrias/genética , Obesidad/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Obesidad/metabolismo , Obesidad/patología , Respuesta de Proteína Desplegada/genética
8.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698485

RESUMEN

Depletion of yeast/fly Ataxin-2 rescues TDP-43 overexpression toxicity. In mouse models of Amyotrophic Lateral Sclerosis via TDP-43 overexpression, depletion of its ortholog ATXN2 mitigated motor neuron degeneration and extended lifespan from 25 days to >300 days. There is another ortholog in mammals, named ATXN2L (Ataxin-2-like), which is almost uncharacterized but also functions in RNA surveillance at stress granules. We generated mice with Crispr/Cas9-mediated deletion of Atxn2l exons 5-8, studying homozygotes prenatally and heterozygotes during aging. Our novel findings indicate that ATXN2L absence triggers mid-gestational embryonic lethality, affecting female animals more strongly. Weight and development stages of homozygous mutants were reduced. Placenta phenotypes were not apparent, but brain histology showed lamination defects and apoptosis. Aged heterozygotes showed no locomotor deficits or weight loss over 12 months. Null mutants in vivo displayed compensatory efforts to maximize Atxn2l expression, which were prevented upon nutrient abundance in vitro. Mouse embryonal fibroblast cells revealed more multinucleated giant cells upon ATXN2L deficiency. In addition, in human neural cells, transcript levels of ATXN2L were induced upon starvation and glucose and amino acids exposure, but this induction was partially prevented by serum or low cholesterol administration. Neither ATXN2L depletion triggered dysregulation of ATXN2, nor a converse effect was observed. Overall, this essential role of ATXN2L for embryogenesis raises questions about its role in neurodegenerative diseases and neuroprotective therapies.


Asunto(s)
Pérdida del Embrión/genética , Eliminación de Gen , Ratones/embriología , Animales , Sistemas CRISPR-Cas , Línea Celular , Pérdida del Embrión/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones/genética , Embarazo
9.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932600

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV-Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication.


Asunto(s)
Ataxina-2/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Regulación hacia Abajo/genética , Células de Purkinje/fisiología , Animales , Proteínas de Unión al Calcio/genética , Células Cultivadas , Cerebelo/fisiología , Ratones , Ratones Noqueados , ARN Mensajero/genética , Sinapsis/genética
10.
Neurobiol Dis ; 132: 104559, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31376479

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.


Asunto(s)
Acetiltransferasas/genética , Ácido Aspártico/análogos & derivados , Ataxina-2/genética , Técnicas de Sustitución del Gen/métodos , Ataxias Espinocerebelosas/genética , Repeticiones de Trinucleótidos/genética , Acetiltransferasas/biosíntesis , Animales , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Ataxina-2/biosíntesis , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Masculino , Ratones , Ratones Transgénicos , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
11.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277379

RESUMEN

Hereditary Parkinson's disease (PD) can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) as stressor or the autosomal recessive deficiency of PINK1 Serine/Threonine-phosphorylation activity as stress-response. We demonstrated the combination of PINK1-knockout with overexpression of SNCAA53T in double mutant (DM) mice to exacerbate locomotor deficits and to reduce lifespan. To survey posttranslational modifications of proteins underlying the pathology, brain hemispheres of old DM mice underwent quantitative label-free global proteomic mass spectrometry, focused on Ser/Thr-phosphorylations. As an exceptionally strong effect, we detected >300-fold reductions of phosphoThr1928 in MAP1B, a microtubule-associated protein, and a similar reduction of phosphoSer3781 in ANK2, an interactor of microtubules. MAP1B depletion is known to trigger perturbations of microtubular mitochondria trafficking, neurite extension, and synaptic function, so it was noteworthy that relevantly decreased phosphorylation was also detected for other microtubule and microfilament factors, namely MAP2S1801, MARK1S394, MAP1AT1794, KIF1AS1537, 4.1NS541, 4.1GS86, and ADD2S528. While the MAP1B heavy chain supports regeneration and growth cones, its light chain assists DAPK1-mediated autophagy. Interestingly, relevant phosphorylation decreases of DAPK2S299, VPS13DS2429, and VPS13CS2480 in the DM brain affected regulators of autophagy, which are implicated in PD. Overall, significant downregulations were enriched for PFAM C2 domains, other kinases, and synaptic transmission factors upon automated bioinformatics, while upregulations were not enriched for selective motifs or pathways. Validation experiments confirmed the change of LC3 processing as reflection of excessive autophagy in DM brain, and dependence of ANK2/MAP1B expression on PINK1 levels. Our new data provide independent confirmation in a mouse model with combined PARK1/PARK4/PARK6 pathology that MAP1B/ANK2 phosphorylation events are implicated in Parkinsonian neurodegeneration. These findings expand on previous observations in Drosophila melanogaster that the MAP1B ortholog futsch in the presynapse is a primary target of the PARK8 protein LRRK2, and on a report that MAP1B is a component of the pathological Lewy body aggregates in PD patient brains. Similarly, ANK2 gene locus variants are associated with the risk of PD, ANK2 interacts with PINK1/Parkin-target proteins such as MIRO1 or ATP1A2, and ANK2-derived peptides are potent inhibitors of autophagy.


Asunto(s)
Ancirinas/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Sinapsis/metabolismo , alfa-Sinucleína/metabolismo , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Ratones Noqueados , Ratones Mutantes , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Dominios Proteicos
12.
Int J Mol Sci ; 20(23)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766565

RESUMEN

Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.


Asunto(s)
Ataxina-2/genética , Ceramidas/metabolismo , Esfingomielinas/metabolismo , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Ataxina-2/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Esfingosina N-Aciltransferasa/genética , Esfingosina N-Aciltransferasa/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
13.
Mol Cell Proteomics ; 15(5): 1728-39, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26850065

RESUMEN

Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Ataxina-2/genética , Cerebelo/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Proteómica/métodos , Animales , Ataxina-2/metabolismo , Atrofia , Biología Computacional/métodos , Regulación hacia Abajo , Redes Reguladoras de Genes , Humanos , Redes y Vías Metabólicas , Ratones Noqueados , Mapas de Interacción de Proteínas
14.
Int J Mol Sci ; 19(6)2018 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-29865270

RESUMEN

Parkinson's disease (PD) is characterized by distinct motor and non-motor symptoms. Sleep disorders are the most frequent and challenging non-motor symptoms in PD patients, and there is growing evidence that they are a consequence of disruptions within the circadian system. PD is characterized by a progressive degeneration of the dorsal vagal nucleus and midbrain dopaminergic neurons together with an imbalance of many other neurotransmitters. Mutations in α-synuclein (SNCA), a protein modulating SNARE complex-dependent neurotransmission, trigger dominantly inherited PD variants and sporadic cases of PD. The A53T SNCA missense mutation is associated with an autosomal dominant early-onset familial PD. To test whether this missense mutation affects the circadian system, we analyzed the spontaneous locomotor behavior of non-transgenic wildtype mice and transgenic mice overexpressing mutant human A53T α-synuclein (A53T). The mice were subjected to entrained- and free-running conditions as well as to experimental jet lag. Furthermore, the vesicular glutamate transporter 2 (VGLUT2) in the suprachiasmatic nucleus (SCN) was analyzed by immunohistochemistry. Free-running circadian rhythm and, thus, circadian rhythm generation, were not affected in A53T mice. A53T mice entrained to the light⁻dark cycle, however, with an advanced phase angle of 2.65 ± 0.5 h before lights off. Moreover, re-entrainment after experimental jet lag was impaired in A53T mice. Finally, VGLUT2 immunoreaction was reduced in the SCN of A53T mice. These data suggest an impaired light entrainment of the circadian system in A53T mice.


Asunto(s)
Relojes Circadianos , Modelos Animales de Enfermedad , Locomoción , Enfermedad de Parkinson/metabolismo , Transmisión Sináptica , alfa-Sinucleína/fisiología , Animales , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Mutación , Enfermedad de Parkinson/fisiopatología , Estimulación Luminosa , Regulación hacia Arriba , alfa-Sinucleína/genética
15.
Hum Mol Genet ; 24(4): 1061-76, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25296918

RESUMEN

The common age-related neurodegeneration of Parkinson's disease can result from dominant causes like increased dosage of vesicle-associated alpha-synuclein (SNCA) or recessive causes like deficiency of mitophagy factor PINK1. Interactions between these triggers and their convergence onto shared pathways are crucial, but currently conflicting evidence exists. Here, we crossed previously characterized mice with A53T-SNCA overexpression and with Pink1 deletion to generate double mutants (DMs). We studied their lifespan and behavior, histological and molecular anomalies at late and early ages. DM animals showed potentiated phenotypes in comparison with both single mutants (SMs), with reduced survival and strongly reduced spontaneous movements from the age of 3 months onwards. In contrast to SMs, a quarter of DM animals manifested progressive paralysis at ages >1 year and exhibited protein aggregates immunopositive for pSer129-SNCA, p62 and ubiquitin in spinal cord and basal brain. Brain proteome quantifications of ubiquitination sites documented altered degradation of SNCA and the DNA-damage marker H2AX at the age of 18 months. Global brain transcriptome profiles and qPCR validation experiments identified many consistent transcriptional dysregulations already at the age of 6 weeks, which were absent from SMs. The observed downregulations for Dapk1, Dcaf17, Rab42 and the novel SNCA-marker Lect1 as well as the upregulations for Dctn5, Mrpl9, Tmem181a, Xaf1 and H2afx reflect changes in ubiquitination, mitochondrial/synaptic/microtubular/cell adhesion dynamics and DNA damage. Thus, our study confirmed that SNCA-triggered neurotoxicity is exacerbated by the absence of PINK1 and identified a novel molecular signature that is detectable early in the course of this double pathology.


Asunto(s)
Expresión Génica , Mutación , Proteínas Quinasas/genética , alfa-Sinucleína/genética , Factores de Edad , Animales , Encéfalo/metabolismo , Encéfalo/patología , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Noqueados , Actividad Motora , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/mortalidad , Enfermedad de Parkinson/patología , Fenotipo , Proteínas Quinasas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Transcriptoma , alfa-Sinucleína/metabolismo
16.
J Neuroinflammation ; 14(1): 154, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768533

RESUMEN

BACKGROUND: PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson's disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. METHODS: Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. RESULTS: In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting "intracellular membrane-bounded organelles". Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes-while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1 -/- primary neurons in the first weeks after brain dissociation, (2) aged Pink1 -/- midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1 -/- embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients. CONCLUSIONS: Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Mitofagia/genética , Enfermedad de Parkinson/patología , Proteínas Quinasas/deficiencia , Empalme del ARN/genética , Ubiquitinación/genética , Factores de Edad , Envejecimiento/patología , Animales , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Metabolismo de los Lípidos/genética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Neuroblastoma/patología , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , alfa-Sinucleína/metabolismo
17.
Cerebellum ; 16(1): 68-81, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26868665

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.


Asunto(s)
Ataxina-2/genética , Ataxina-2/metabolismo , Calcio/metabolismo , Cerebelo/metabolismo , Homeostasis/fisiología , Transcriptoma , Animales , Cerebelo/patología , Expresión Génica/fisiología , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Transcriptoma/fisiología , Repeticiones de Trinucleótidos
18.
Cereb Cortex ; 26(4): 1539-1557, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25596589

RESUMEN

Choosing and implementing the rules for contextually adequate behavior depends on frontostriatal interactions. Observations in Parkinson's disease and pharmacological manipulations of dopamine transmission suggest that these corticobasal loops are modulated by dopamine. To determine, therefore, the physiological contributions of dopamine to task-rule-related processing, we performed a cue-target fMRI reading paradigm in 71 healthy participants and investigated the effects of COMT Val158Met, DAT1 VNTR 9/10, and DRD2/ANKK1 polymorphisms. The DRD2/ANKK1 polymorphism did not affect results. Intermediate prefrontal dopamine concentrations in COMT Val158Met heterozygotes facilitated preparatory interactions between the mesial prefrontal cortex and the left striatum during preparation for overt reading. To our knowledge, this is the first report of an inverted U-shaped curve modulation of cognition-related brain activity by prefrontal dopamine levels. In contrast, a linear effect of COMT Val158Met and DAT1 VNTR 9/10 polymorphisms on preparatory activity in the left inferior frontal gyrus pointed to a negative interaction between tonic lateral prefrontal and phasic subcortical dopamine. The COMT Val158Met polymorphism affected also feedforward and feedback processing in the sensorimotor speech system. Our results suggest that dopamine modulates corticobasal interactions on both the cortical and subcortical level but differently depending on the specific cognitive subprocesses involved.


Asunto(s)
Encéfalo/fisiología , Catecol O-Metiltransferasa/genética , Cognición/fisiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Dopamina/metabolismo , Polimorfismo de Nucleótido Simple , Lectura , Habla , Adulto , Orientación del Axón/genética , Orientación del Axón/fisiología , Encéfalo/metabolismo , Mapeo Encefálico , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Repeticiones de Minisatélite , Proteínas Serina-Treonina Quinasas/genética , Receptores de Dopamina D2/genética , Adulto Joven
19.
Neurobiol Dis ; 96: 115-126, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27597528

RESUMEN

Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.


Asunto(s)
Ataxina-2/genética , Regulación de la Expresión Génica/genética , Péptidos/genética , Proteínas Quinasas/metabolismo , Ataxias Espinocerebelosas/sangre , Adulto , Anciano , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Medio de Cultivo Libre de Suero/farmacología , Salud de la Familia , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuroblastoma/patología , Ataxias Espinocerebelosas/genética , Turquía , Adulto Joven
20.
J Neurosci ; 34(41): 13586-99, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25297088

RESUMEN

Parkinson disease (PD) is an α-synucleinopathy resulting in the preferential loss of highly vulnerable dopamine (DA) substantia nigra (SN) neurons. Mutations (e.g., A53T) in the α-synuclein gene (SNCA) are sufficient to cause PD, but the mechanism of their selective action on vulnerable DA SN neurons is unknown. In a mouse model overexpressing mutant α-synuclein (A53T-SNCA), we identified a SN-selective increase of in vivo firing frequencies in DA midbrain neurons, which was not observed in DA neurons in the ventral tegmental area. The selective and age-dependent gain-of-function phenotype of A53T-SCNA overexpressing DA SN neurons was in part mediated by an increase of their intrinsic pacemaker frequency caused by a redox-dependent impairment of A-type Kv4.3 potassium channels. This selective enhancement of "stressful pacemaking" of DA SN neurons in vivo defines a functional response to mutant α-synuclein that might be useful as a novel biomarker for the "DA system at risk" before the onset of neurodegeneration in PD.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Mutación/fisiología , Estrés Oxidativo/fisiología , Canales de Potasio Shal/fisiología , Sustancia Negra/fisiología , alfa-Sinucleína/genética , Envejecimiento/fisiología , Animales , Fenómenos Electrofisiológicos , Glutatión/metabolismo , Glutatión/fisiología , Activación del Canal Iónico/fisiología , Masculino , Ratones , Mutación/genética , Sustancia Negra/citología , Sustancia Negra/crecimiento & desarrollo , Área Tegmental Ventral/crecimiento & desarrollo , Área Tegmental Ventral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA