Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Biol Med ; 161: 107021, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37216775

RESUMEN

Magnetic resonance imaging is a fundamental tool to reach a diagnosis of multiple sclerosis and monitoring its progression. Although several attempts have been made to segment multiple sclerosis lesions using artificial intelligence, fully automated analysis is not yet available. State-of-the-art methods rely on slight variations in segmentation architectures (e.g. U-Net, etc.). However, recent research has demonstrated how exploiting temporal-aware features and attention mechanisms can provide a significant boost to traditional architectures. This paper proposes a framework that exploits an augmented U-Net architecture with a convolutional long short-term memory layer and attention mechanism which is able to segment and quantify multiple sclerosis lesions detected in magnetic resonance images. Quantitative and qualitative evaluation on challenging examples demonstrated how the method outperforms previous state-of-the-art approaches, reporting an overall Dice score of 89% and also demonstrating robustness and generalization ability on never seen new test samples of a new dedicated under construction dataset.


Asunto(s)
Esclerosis Múltiple , Redes Neurales de la Computación , Humanos , Inteligencia Artificial , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
J Imaging ; 8(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36286357

RESUMEN

Multimedia data manipulation and forgery has never been easier than today, thanks to the power of Artificial Intelligence (AI). AI-generated fake content, commonly called Deepfakes, have been raising new issues and concerns, but also new challenges for the research community. The Deepfake detection task has become widely addressed, but unfortunately, approaches in the literature suffer from generalization issues. In this paper, the Face Deepfake Detection and Reconstruction Challenge is described. Two different tasks were proposed to the participants: (i) creating a Deepfake detector capable of working in an "in the wild" scenario; (ii) creating a method capable of reconstructing original images from Deepfakes. Real images from CelebA and FFHQ and Deepfake images created by StarGAN, StarGAN-v2, StyleGAN, StyleGAN2, AttGAN and GDWCT were collected for the competition. The winning teams were chosen with respect to the highest classification accuracy value (Task I) and "minimum average distance to Manhattan" (Task II). Deep Learning algorithms, particularly those based on the EfficientNet architecture, achieved the best results in Task I. No winners were proclaimed for Task II. A detailed discussion of teams' proposed methods with corresponding ranking is presented in this paper.

3.
J Imaging ; 7(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34460764

RESUMEN

To properly contrast the Deepfake phenomenon the need to design new Deepfake detection algorithms arises; the misuse of this formidable A.I. technology brings serious consequences in the private life of every involved person. State-of-the-art proliferates with solutions using deep neural networks to detect a fake multimedia content but unfortunately these algorithms appear to be neither generalizable nor explainable. However, traces left by Generative Adversarial Network (GAN) engines during the creation of the Deepfakes can be detected by analyzing ad-hoc frequencies. For this reason, in this paper we propose a new pipeline able to detect the so-called GAN Specific Frequencies (GSF) representing a unique fingerprint of the different generative architectures. By employing Discrete Cosine Transform (DCT), anomalous frequencies were detected. The ß statistics inferred by the AC coefficients distribution have been the key to recognize GAN-engine generated data. Robustness tests were also carried out in order to demonstrate the effectiveness of the technique using different attacks on images such as JPEG Compression, mirroring, rotation, scaling, addition of random sized rectangles. Experiments demonstrated that the method is innovative, exceeds the state of the art and also give many insights in terms of explainability.

4.
J Imaging ; 7(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34460762

RESUMEN

The identification of printed materials is a critical and challenging issue for security purposes, especially when it comes to documents such as banknotes, tickets, or rare collectable cards: eligible targets for ad hoc forgery. State-of-the-art methods require expensive and specific industrial equipment, while a low-cost, fast, and reliable solution for document identification is increasingly needed in many contexts. This paper presents a method to generate a robust fingerprint, by the extraction of translucent patterns from paper sheets, and exploiting the peculiarities of binary pattern descriptors. A final descriptor is generated by employing a block-based solution followed by principal component analysis (PCA), to reduce the overall data to be processed. To validate the robustness of the proposed method, a novel dataset was created and recognition tests were performed under both ideal and noisy conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA