Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomacromolecules ; 25(8): 5058-5067, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39013138

RESUMEN

We report the gelation propensity of three gelators derived from l-dihydroxyphenylalanine (l-Dopa), where the amino group is derivatized with three different fatty acids (lauric acid, palmitic acid, and azelaic acid). The long aliphatic side chains should introduce additional van der Waals interactions among the molecules, contributing to the self-assembly process. The hydrogels have been prepared with the pH change method, and both the hydrogels and the corresponding aerogels have been analyzed using several techniques. In any case, Lau-Dopa provides stronger hydrogels compared with the other gelators. This property may be ascribed to its tendency to efficiently form supramolecular ß-sheet structures, as outlined by the ECD, IR, and SEM analyses. Moreover, the preliminary measurement of the apparent pKa displays for Lau-Dopa two plateaux, as previously observed for, one at about pH 12 and a second one at pH 7.5. Thus, its pKa results in two apparent pKa shifts of ∼8.5 and ∼4 pH units above the theoretical pKa, as a consequence of a multistep self-assembly pathway that correlates, in the final ß-sheet-based hydrogel, with a high degree of order and stability.


Asunto(s)
Hidrogeles , Levodopa , Hidrogeles/química , Levodopa/química , Concentración de Iones de Hidrógeno
2.
J Pept Sci ; : e3643, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010663

RESUMEN

Low-molecular-weight (LMW) gelators are a versatile class of compounds able to self-assemble and to form supramolecular materials, such as gels. The use of LMW peptides to produce these gels shows many advantages, because of their wide structure tunability, the low-cost and effective synthesis, and the in vivo biocompatibility and biodegradability, which makes them optimal candidates for release and delivery applications. In addition, in these materials, the binding of the hosts may occur through a variety of noncovalent interactions, which are also the main factors responsible for the self-assembly of the gelators, and through specific interactions with the fibers or the pores of the gel matrix. This review aims to report LMW gels based on amino acid and peptide derivatives used for the release of many different species (drugs, fragrances, dyes, proteins, and cells) with a focus on the possible strategies to incorporate the cargo in these materials, and to demonstrate how versatile these self-assembled materials are in several applications.

3.
Mar Drugs ; 22(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667781

RESUMEN

This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline ß-chitin fibrils (ß-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction conditions were also tested for α-chitin, which showed a lower reactivity and a slower reaction kinetic. After that, a set of hydrogels was synthesized from ß-chitOx 1 wt.% at pH 9, inducing the gelation by sonication. These hydrogels were exposed to different environments, such as different amounts of Ca2+, Na+ or Mg2+ solutions, buffered environments such as pH 9, PBS, pH 5, and pH 1, and pure water. These hydrogels were characterized using rheology, XRPD, SEM, and FT-IR. The notable feature of these hydrogels is their ability to be strengthened through cation chelation, being metal cations or hydrogen ions, with a five- to tenfold increase in their storage modulus (G'). The ions were theorized to alter the hydrogen-bonding network of the polymer and intercalate in chitin's crystal structure along the a-axis. On the other hand, the hydrogel dissolved at pH 9 and pure water. These bio-based tunable hydrogels represent an intriguing material suitable for biomedical applications.


Asunto(s)
Quitina , Hidrogeles , Oxidación-Reducción , Hidrogeles/química , Quitina/química , Concentración de Iones de Hidrógeno , Metales/química , Reología , Hidrógeno/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Chemistry ; 29(69): e202301005, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677125

RESUMEN

Over the past two decades, the chirality-induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time-resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady-state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi-technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS-polarized ET.

5.
J Pept Sci ; 29(8): e3483, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36750310

RESUMEN

Low-molecular-weight hydrogels are made of a small percentage of small organic molecules dispersed in an aqueous medium, which may aggregate in several manners using different methods. However, often the organic gelator in water has poor solubility, so the addition of a solubilising agent is required. In the case of acidic gelators, this mainly consists of the addition of a strong base, that is sodium hydroxide, that deprotonates the acidic moiety, so the gelator molecules become more soluble and tend to assemble into micelles, forming a dispersion. Some gelators, however, are sensitive to the harsh pH and get hydrolysed. This is the case of some molecules presenting carbamates in their features, like Fmoc-protected or oxazolidinone-containing peptides. In this paper, we present a valid alternative to sodium hydroxide, by dissolving a tripeptide containing an oxazolidinone moiety in a phosphate buffer (PB) medium at pH 7.4. The results obtained with the NaOH dissolution are compared with the ones with PB, as both methods present advantages and drawbacks. The use of NaOH produces transparent but weak hydrogels, as it exposes the gelator to harsh conditions that end up in its partial hydrolysis, which is more pronounced at high concentrations (≥10 mM). Using PB to dissolve the gelator, this problem is completely avoided as no hydrolysis product has been detected in the hydrogels, which are very stiff although more opaque. By tuning the preparation conditions, we can obtain a wide variety of hydrogels, with the properties required by the final application.


Asunto(s)
Hidrogeles , Oxazolidinonas , Hidrogeles/química , Hidróxido de Sodio , Concentración de Iones de Hidrógeno , Péptidos , Agua
6.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833862

RESUMEN

The search for alternative ways to give a second life to materials paved the way for detailed investigation into three silica-polyethylenimine (Si-PEI) materials for the purpose of CO2 adsorption in carbon capture and storage. A solvent extraction procedure was investigated to recover degraded PEIs and silica, and concomitantly, pyrolysis was evaluated to obtain valuable chemicals such as alkylated pyrazines. An array of thermal (TGA, Py-GC-MS), mechanical (rheology), and spectroscopical (ATR-FTIR, 1H-13C-NMR) methods were applied to PEIs extracted with methanol to determine the relevant physico-chemical features of these polymers when subjected to degradation after use in CO2 capture. Proxies of degradation associated with the plausible formation of urea/carbamate moieties were revealed by Py-GC-MS, NMR, and ATR-FTIR. The yield of alkylpyrazines estimated by Py-GC-MS highlighted the potential of exhausted PEIs as possibly valuable materials in other applications.


Asunto(s)
Polietileneimina , Dióxido de Silicio , Dióxido de Silicio/química , Polietileneimina/química , Dióxido de Carbono/química , Espectroscopía de Resonancia Magnética , Adsorción
7.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985499

RESUMEN

Supramolecular and biocompatible hydrogels with a tunable pH ranging from 5.5 to 7.6 lead to a wide variety of formulations useful for many different topical applications compatible with the skin pH. An in vitro viability/cytotoxicity test of the gel components demonstrated that they are non-toxic, as the cells continue to proliferate after 48 h. An analysis of the mechanical properties demonstrates that the hydrogels have moderate strength and an excellent linear viscoelastic range with the absence of a proper breaking point, confirmed with thixotropy experiments. Two cosmetic active peptides (Trifluoroacetyl tripeptide-2 and Palmitoyl tripeptide-5) were successfully added to the hydrogels and their transdermal permeation was analysed with Franz diffusion cells. The liquid chromatography-mass spectrometry (HPLC-MS) analyses of the withdrawn samples from the receiving solutions showed that Trifluoroacetyl tripeptide-2 permeated in a considerable amount while almost no transdermal permeation of Palmitoyl tripeptide-5 was observed.


Asunto(s)
Hidrogeles , Péptidos , Hidrogeles/química , Péptidos/química , Administración Cutánea , Composición de Medicamentos , Materiales Biocompatibles/química
8.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328526

RESUMEN

Imines or Schiff bases (SB) are formed by the condensation of an aldehyde or a ketone with a primary amine, with the removal of a water molecule. Schiff bases are central molecules in several biological processes for their ability to form and cleave by small variation of the medium. We report here the controlled hydrolysis of four SBs that may be applied in the fragrance industry, as they are profragrances all containing odorant molecules: methyl anthranilate as primary amine, and four aldehydes (cyclamal, helional, hydroxycitronellal and triplal) that are very volatile odorants. The SB stability was assessed over time by HPLC-MS in neutral or acidic conditions, both in solution and when trapped in low molecular weight gels. Our results demonstrate that it is possible to control the hydrolysis of the Schiff bases in the gel environment, thus tuning the quantity of aldehyde released and the persistency of the fragrance.


Asunto(s)
Perfumes , Bases de Schiff , Aldehídos , Aminas , Geles , Hidrólisis , Peso Molecular , Odorantes
9.
Soft Matter ; 17(30): 7221-7226, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34286796

RESUMEN

Most supramolecular gels are stable or assumed to be stable over time, and aging effects are often not studied. However, some gels do show clear changes on aging, and a small number of systems exhibit gel-to-crystal transitions. In these cases, crystals form over time, typically at the expense of the network underpinning the gel; this leads to the gel falling apart. These systems are rare, and little is known about how these gel-to-crystal transitions occur. Here, we use a range of techniques to understand in detail a gel-to-crystal transition for a specific functionalised dipeptide based gelator. We show that the gel-to-crystal transition depends on the final pH of the medium which we control by varying the amount of glucon-δ-lactone (GdL) added. In the gel phase, at low concentrations of GdL, and at early time points with high concentrations of GdL, we are able to show the nanometre scale dimensions of the self-assembled fibre using SAXS; however there is no evidence of molecular ordering of the gel fibres in the WAXS. At low concentrations of GdL, these self-assembled fibres stiffen with time but do not crystallise over the timescale of the SAXS experiment. At high concentrations of GdL, the fibres are already stiffened, and then, as the pH drops further, give way to the presence of crystals which appear to grow preferentially along the direction of the fibre axis. We definitively show therefore that the gel and crystal phase are not the same. Our work shows that many assumptions in the literature are incorrect. Finally, we also show that the sample holder geometry is an important parameter for these experiments, with the rate of crystallisation depending on the holder in which the experiment is carried out.

10.
Org Biomol Chem ; 19(21): 4622-4636, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33978030

RESUMEN

l-Dopa (3,4-dihydroxyphenylalanine) is a chiral amino acid generated via biosynthesis from l-tyrosine in plants and some animals. The presence of multiple interacting sites makes l-Dopa a multifunctional building block for the preparation of supramolecular materials. The possibility to form hydrogen bonds and the presence of the aromatic ring allow l-Dopa molecules to interact through a series of non-covalent interactions. The additional presence of the catechol moiety really makes this compound unique: not only does it have implications in the self-assembly process of Dopa itself and with other substrates, but also it highly increases the number of applications of the final material, since it works as an antioxidant, radical trapper, metal chelator, reducing agent and adhesive. l-Dopa and catechol containing derivatives have been extensively introduced inside both synthetic and natural polymers to obtain amazing functional materials. In this review we report the preparation of small peptides containing l-Dopa, focusing on the supramolecular materials that can be obtained with them, ranging from fibrils to fibres, gels, films and coatings, all having the different applications mentioned above and many others.


Asunto(s)
Levodopa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA