Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Biol ; 22(9): e3002792, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39302959

RESUMEN

Adaptation is usually explained by beneficial genetic mutations that are transmitted from parents to offspring and become fixed in the adapted population. However, genetic mutation analysis alone is not sufficient to fully explain the adaptive processes, and several studies report the existence of nongenetic (or epigenetic) inheritance that can enable adaptation to new environments. In the present work, we tested the hypothesis of the role of DNA methylation, a form of epigenetic modification, in adaptation of the plant pathogen Ralstonia pseudosolanacearum to the host during experimental evolution. Using SMRT-seq technology, we analyzed the methylomes of 31 experimentally evolved clones obtained after serial passages on 5 different plant species during 300 generations. Comparison with the methylome of the ancestral clone revealed a list of 50 differential methylated sites (DMSs) at the GTWWAC motif. Gene expression analysis of the 39 genes targeted by these DMSs revealed limited correlation between differential methylation and differential expression of the corresponding genes. Only 1 gene showed a correlation, the RSp0338 gene encoding the EpsR regulator protein. The MSRE-qPCR technology, used as an alternative approach for DNA methylation analysis, also found the 2 DMSs upstream RSp0338. Using site-directed mutagenesis, we demonstrated the contribution of these 2 DMSs in host adaptation. As these DMSs appeared very early in the experimental evolution, we hypothesize that such fast epigenetic changes can allow rapid adaptation to the plant stem environment. In addition, we found that the change in DNA methylation upstream RSp0338 remains stable at least for 100 generations outside the host and thus can contribute to long-term adaptation to the host plant. To our knowledge, this is the first study showing a direct link between bacterial epigenetic variation and adaptation to a new environment.


Asunto(s)
Adaptación Fisiológica , Metilación de ADN , Metilación de ADN/genética , Adaptación Fisiológica/genética , Epigénesis Genética , Ralstonia/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Regulación Bacteriana de la Expresión Génica , Evolución Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Biológica , Plantas/microbiología , Plantas/genética , Mutación/genética
2.
Mol Cell ; 70(1): 83-94.e7, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625040

RESUMEN

Growing resistance of pathogenic bacteria and shortage of antibiotic discovery platforms challenge the use of antibiotics in the clinic. This threat calls for exploration of unconventional sources of antibiotics and identification of inhibitors able to eradicate resistant bacteria. Here we describe a different class of antibiotics, odilorhabdins (ODLs), produced by the enzymes of the non-ribosomal peptide synthetase gene cluster of the nematode-symbiotic bacterium Xenorhabdus nematophila. ODLs show activity against Gram-positive and Gram-negative pathogens, including carbapenem-resistant Enterobacteriaceae, and can eradicate infections in animal models. We demonstrate that the bactericidal ODLs interfere with protein synthesis. Genetic and structural analyses reveal that ODLs bind to the small ribosomal subunit at a site not exploited by current antibiotics. ODLs induce miscoding and promote hungry codon readthrough, amino acid misincorporation, and premature stop codon bypass. We propose that ODLs' miscoding activity reflects their ability to increase the affinity of non-cognate aminoacyl-tRNAs to the ribosome.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , ADN Bacteriano/genética , Infecciones por Klebsiella/tratamiento farmacológico , Subunidades Ribosómicas Pequeñas/efectos de los fármacos , Xenorhabdus/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Animales , Antibacterianos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Células Hep G2 , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Masculino , Ratones Endogámicos ICR , Biosíntesis de Proteínas/efectos de los fármacos , Subunidades Ribosómicas Pequeñas/genética , Subunidades Ribosómicas Pequeñas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33685902

RESUMEN

NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502.

4.
Nucleic Acids Res ; 49(14): 8384-8395, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34255843

RESUMEN

Bacteria have evolved sophisticated mechanisms to deliver potent toxins into bacterial competitors or into eukaryotic cells in order to destroy rivals and gain access to a specific niche or to hijack essential metabolic or signaling pathways in the host. Delivered effectors carry various activities such as nucleases, phospholipases, peptidoglycan hydrolases, enzymes that deplete the pools of NADH or ATP, compromise the cell division machinery, or the host cell cytoskeleton. Effectors categorized in the family of polymorphic toxins have a modular structure, in which the toxin domain is fused to additional elements acting as cargo to adapt the effector to a specific secretion machinery. Here we show that Photorhabdus laumondii, an entomopathogen species, delivers a polymorphic antibacterial toxin via a type VI secretion system. This toxin inhibits protein synthesis in a NAD+-dependent manner. Using a biotinylated derivative of NAD, we demonstrate that translation is inhibited through ADP-ribosylation of the ribosomal 23S RNA. Mapping of the modification further showed that the adduct locates on helix 44 of the thiostrepton loop located in the GTPase-associated center and decreases the GTPase activity of the EF-G elongation factor.


Asunto(s)
Toxinas Bacterianas/farmacología , GTP Fosfohidrolasas/genética , ARN Ribosómico 23S/genética , Sistemas de Secreción Tipo VI/efectos de los fármacos , ADP-Ribosilación/efectos de los fármacos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , NAD/genética , Factor G de Elongación Peptídica/genética , Photorhabdus/química , Photorhabdus/genética , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico 23S/efectos de los fármacos , Tioestreptona/química , Tioestreptona/farmacología
5.
Curr Top Microbiol Immunol ; 402: 39-51, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28091933

RESUMEN

There is a complex interplay between the regulation of flagellar motility and the expression of virulence factors in many bacterial pathogens. Here, we review the literature on the direct and indirect roles of flagellar motility in mediating the tripartite interaction between entomopathogenic bacteria (Photorhabdus and Xenorhabdus), their nematode hosts, and their insect targets. First, we describe the swimming and swarming motility of insect pathogenic bacteria and its impact on insect colonization. Then, we describe the coupling between the expression of flagellar and virulence genes and the dynamic of expression of the flagellar regulon during invertebrate infection. We show that the flagellar type 3 secretion system (T3SS) is also an export apparatus for virulence proteins in X. nematophila. Finally, we demonstrate that phenotypic variation, a common property of the bacterial symbionts of nematodes, also alters flagellar motility in Photorhabdus and Xenorhabdus. Finally, the so-called phenotypic heterogeneity phenomenon in the flagellar gene expression network will be also discussed. As the main molecular studies were performed in X. nematophila, future perspectives for the study of the interplay between flagellum and invertebrate interactions in Photorhabdus will be discussed.


Asunto(s)
Flagelos , Photorhabdus , Xenorhabdus , Flagelos/fisiología , Simbiosis , Virulencia
6.
PLoS Genet ; 9(10): e1003915, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204316

RESUMEN

Heterogeneity in the expression of various bacterial genes has been shown to result in the presence of individuals with different phenotypes within clonal bacterial populations. The genes specifying motility and flagellar functions are coordinately regulated and form a complex regulon, the flagellar regulon. Complex interplay has recently been demonstrated in the regulation of flagellar and virulence gene expression in many bacterial pathogens. We show here that FliZ, a DNA-binding protein, plays a key role in the insect pathogen, Xenorhabdus nematophila, affecting not only hemolysin production and virulence in insects, but efficient swimming motility. RNA-Seq analysis identified FliZ as a global regulatory protein controlling the expression of 278 Xenorhabdus genes either directly or indirectly. FliZ is required for the efficient expression of all flagellar genes, probably through its positive feedback loop, which controls expression of the flhDC operon, the master regulator of the flagellar circuit. FliZ also up- or downregulates the expression of numerous genes encoding non-flagellar proteins potentially involved in key steps of the Xenorhabdus lifecycle. Single-cell analysis revealed the bimodal expression of six identified markers of the FliZ regulon during exponential growth of the bacterial population. In addition, a combination of fluorescence-activated cell sorting and RT-qPCR quantification showed that this bimodality generated a mixed population of cells either expressing ("ON state") or not expressing ("OFF state") FliZ-dependent genes. Moreover, studies of a bacterial population exposed to a graded series of FliZ concentrations showed that FliZ functioned as a rheostat, controlling the rate of transition between the "OFF" and "ON" states in individuals. FliZ thus plays a key role in cell fate decisions, by transiently creating individuals with different potentials for motility and host interactions.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Flagelos/metabolismo , Xenorhabdus/genética , Animales , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Flagelos/genética , Citometría de Flujo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Insectos/microbiología , Regulón/genética , Análisis de la Célula Individual , Virulencia/genética , Xenorhabdus/metabolismo
7.
J Invertebr Pathol ; 124: 15-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25315609

RESUMEN

Xenorhabdus bacteria (γ-proteobacteria: Enterobacteriaceae) have dual lifestyles. They have a mutualistic relationship with Steinernema nematodes (Nematoda: Steinernematidae) and are pathogenic to a wide range of insects. Each Steinernema nematode associates with a specific Xenorhabdus species. However, a Xenorhabdus species can have multiple nematode hosts. For example, Xenorhabdus bovienii (Xb) colonizes at least nine Steinernema species from two different phylogenetic clades. The Steinernema-Xb partnership has been found in association with different insect hosts. Biological and molecular data on the Steinernema jollieti-Xb strain SS-2004 pair have recently been described. In particular, the Xb SS-2004 bacteria are virulent alone after direct injection into insect, making this strain a model for studying Xb virulence. In this study, we searched for Xb strains attenuated in virulence. For this purpose, we underwent infection assays with five Steinernema spp.-Xb pairs with two insects, Galleria mellonella (Lepidoptera: Pyralidae) and Spodoptera littoralis (Lepidoptera: Noctuidae). The S. weiseri-Xb CS03 pair showed attenuated virulence and lower fitness in S. littoralis in comparison to the other nematode-bacteria pairs. Furthermore, when injected alone into the hemolymph of G. mellonella or S. littoralis, the Xb CS03 bacterial strain was the only non-virulent strain. By comparison with the virulent Xb SS-2004 strain, Xb CS03 showed an increased sensitivity to the insect antimicrobial peptides, suggesting an attenuated response to the insect humoral immunity. To our current knowledge, Xb CS03 is the first non-virulent Xb strain identified. We propose this strain as a new model for studying the Xenorhabdus virulence.


Asunto(s)
Mariposas Nocturnas/microbiología , Nematodos/microbiología , Xenorhabdus/patogenicidad , Animales , Interacciones Huésped-Patógeno , Inmunidad Humoral , Larva/inmunología , Larva/microbiología , Mariposas Nocturnas/inmunología , Simbiosis , Virulencia , Xenorhabdus/fisiología
8.
J Basic Microbiol ; 54(11): 1160-5, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23908000

RESUMEN

Spodoptera littoralis, one of the major pests of many important crop plants, is more susceptible to Bacillus thuringiensis aizawai delta-endotoxins than to those of Bacillus thuringiensis kurstaki. Within the framework of the development of efficient bioinsecticides and the prevention against insect resistance, we tested the effect of mixing B. thuringiensis kurstaki delta-endotoxins and Photorhabdus luminescens cells on S. littoralis growth. The obtained results showed that the growth inhibition of this insect was more effective when B. thuringiensis kurstaki spore-crystal mixture and Photorhabdus luminescens cells were used in combination. Furthermore, this synergism is mainly due to the presence of Cry1Ac, which is one of the three delta-endotoxins that form the crystal of B. thuringiensis kurstaki strain BNS3 in addition to Cry1Aa and Cry2Aa. This work shows a possibility to use B. thuringiensis as a delivery means for Photorhabdus bacteria in order to infect the insect hemocoel and to reduce the risk of developing resistance in the target organism.


Asunto(s)
Proteínas Bacterianas/toxicidad , Endotoxinas/toxicidad , Proteínas Hemolisinas/toxicidad , Photorhabdus/crecimiento & desarrollo , Spodoptera/efectos de los fármacos , Spodoptera/microbiología , Animales , Toxinas de Bacillus thuringiensis , Bioensayo , Spodoptera/fisiología , Análisis de Supervivencia
9.
Res Microbiol ; 174(7): 104081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37196776

RESUMEN

The Resistance-nodulation-division (RND)-type AcrAB-TolC efflux pump contributes to multidrug resistance in Gram-negative bacteria. Recently, the bacterium Photorhabdus laumondii TT01 has emerged as a goldmine for novel anti-infective drug discovery. Outside plants, Photorhabdus is the only Gram-negative known to produce stilbene-derivatives including 3,5-dihydroxy-4-ethyl-trans-stilbene and 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS). IPS is a bioactive polyketide which received considerable attention, mainly because of its antimicrobial properties, and is currently in late-stage clinical development as a topical treatment for psoriasis and dermatitis. To date, little is known about how Photorhabdus survives in the presence of stilbenes. We combined genetic and biochemical approaches to assess whether AcrAB efflux pump exports stilbenes in P. laumondii. We demonstrated that the wild-type (WT) exerts an antagonistic activity against its derivative ΔacrA mutant, and that is able to outcompete it in a dual-strain co-culture assay. The ΔacrA mutant also showed high sensitivity to 3,5-dihydroxy-4-ethyl-trans-stilbene and IPS as well as decreased IPS concentrations in its supernatant comparing to the WT. We report here a mechanism of self-resistance against stilbene derivatives of P. laumondii TT01, which enables these bacteria to survive under high concentrations of stilbenes by extruding them out via the AcrAB efflux pump.

10.
mBio ; 13(1): e0282621, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012352

RESUMEN

Antibiotic resistance is an increasing threat to human health. A direct link has been established between antimicrobial self-resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Natural odilorhabdins (ODLs) constitute a new family of 10-mer linear cationic peptide antibiotics inhibiting bacterial translation by binding to the 30S subunit of the ribosome. These bioactive secondary metabolites are produced by entomopathogenic bacterial symbiont Xenorhabdus (Morganellaceae), vectored by the soil-dwelling nematodes. ODL-producing Xenorhabdus nematophila symbionts have mechanisms of self-protection. In this study, we cloned the 44.5-kb odl biosynthetic gene cluster (odl-BGC) of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed an exclusive cis-link to the odilorhabdin BGC, found only in X. nematophila and a specific phylogenetic clade of Photorhabdus. This work highlights the coevolution of antibiotic production and self-resistance as ancient features of this unique tripartite complex of host-vector-symbiont interactions without odl-BGC dissemination by lateral gene transfer. IMPORTANCE Odilorhabdins (ODLs) constitute a novel antibiotic family with promising properties for treating problematic multidrug-resistant Gram-negative bacterial infections. ODLs are 10-mer linear cationic peptides inhibiting bacterial translation by binding to the small subunit of the ribosome. These natural peptides are produced by Xenorhabdus nematophila, a bacterial symbiont of entomopathogenic nematodes well known to produce large amounts of specialized secondary metabolites. Like other antimicrobial producers, ODL-producing Xenorhabdus nematophila has mechanisms of self-protection. In this study, we cloned the ODL-biosynthetic gene cluster of the symbiont by recombineering and showed that the N-acetyltransferase-encoding gene, oatA, is responsible for ODL resistance. In vitro acetylation and LC-MS/MS analyses showed that OatA targeted the side chain amino group of ODL rare amino acids, leading to a loss of translation inhibition and antibacterial properties. Functional, genomic, and phylogenetic analyses of oatA revealed the coevolution of antibiotic production and self-resistance as ancient feature of this particular niche in soil invertebrates without resistance dissemination.


Asunto(s)
Antiinfecciosos , Nematodos , Xenorhabdus , Animales , Humanos , Filogenia , Acetiltransferasas/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Bacterias/metabolismo , Nematodos/microbiología , Xenorhabdus/genética , Antiinfecciosos/metabolismo , Antibacterianos/metabolismo
11.
Environ Microbiol ; 13(5): 1271-84, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21332625

RESUMEN

Xenorhabdus nematophila engages in complex interactions with invertebrates, through its symbiosis with soil nematodes and its pathogenicity to a broad range of insect larvae. Among the regulatory proteins of Xenorhabdus involved in host interactions, the sigma factor FliA and the regulator FliZ, expressed from the fliAZ operon, play a key role in mediating the production of exoenzymes, motility and full virulence in insects (Lanois et al., 2008). In this study, we investigated the dynamics of the FliA-dependent flagellin gene fliC and FliZ-dependent haemolysin genes xaxAB during insect infection and nematode association by carrying out real-time expression analysis using an unstable GFP monitoring system. We showed that expression of the FliAZ-dependent genes in infected insects is not restricted to a specific tissue but increases significantly just prior to host death and reaches a maximal level in larvae cadaver. Using an iron availability reporter construct, we also showed that iron starvation conditions inhibit expression of FliAZ-dependent genes in vitro, as well as during the first steps of the infectious process. These findings shed further light on the role of the FliAZ regulon in the Xenorhabdus life cycle and suggest that iron may constitute a signal governing Xenorhabdus adaptation to shifting host environments.


Asunto(s)
Proteínas Bacterianas/genética , Flagelina/genética , Proteínas Hemolisinas/genética , Insectos/microbiología , Hierro/metabolismo , Factor sigma/genética , Xenorhabdus/genética , Animales , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Hemolisinas/metabolismo , Larva/microbiología , Operón , Plásmidos , Regiones Promotoras Genéticas , Regulón , Virulencia , Xenorhabdus/patogenicidad
12.
Environ Microbiol Rep ; 13(5): 637-648, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34002534

RESUMEN

The resistance-nodulation-division (RND)-type efflux pumps AcrAB and MdtABC contribute to multidrug-resistance (MDR) in Gram-negative bacteria. Photorhabdus is a symbiotic bacterium of soil nematodes that also produces virulence factors killing insects by septicaemia. We previously showed that mdtA deletion in Photorhabdus laumondii TT01 resulted in no detrimental phenotypes. Here, we investigated the roles of the last two putative RND transporters in TT01 genome, AcrAB and AcrAB-like (Plu0759-Plu0758). Only ΔacrA and ΔmdtAΔacrA mutants were multidrug sensitive, even to triphenyltetrazolium chloride and bromothymol blue used for Photorhabdus isolation from nematodes on the nutrient bromothymol blue-triphenyltetrazolium chloride agar (NBTA) medium. Both mutants also displayed slightly attenuated virulence after injection into Spodoptera littoralis. Transcriptional analysis revealed intermediate levels of acrAB expression in vitro, in vivo and post-mortem, whereas its putative transcriptional repressor acrR was weakly expressed. Yet, plasmid-mediated acrR overexpression did not decrease acrAB transcript levels neither MDR in TT01 WT. While no pertinent mutations were detected in acrR of the same P. laumondii strain grown either on NBTA or nutrient agar, we suggest that AcrR-mediated repression of acrAB is not physiologically required under conditions tested. Finally, we propose that AcrAB is the primary RND-efflux pump, which is essential for MDR in Photorhabdus and may confer adaptive advantages during insect infection.


Asunto(s)
Photorhabdus , Animales , Antibacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Insectos , Photorhabdus/genética , Photorhabdus/metabolismo , Virulencia
13.
BMC Genomics ; 11: 568, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20950463

RESUMEN

BACKGROUND: Flexible genomes facilitate bacterial evolution and are classically organized into polymorphic strain-specific segments called regions of genomic plasticity (RGPs). Using a new web tool, RGPFinder, we investigated plasticity units in bacterial genomes, by exhaustive description of the RGPs in two Photorhabdus and two Xenorhabdus strains, belonging to the Enterobacteriaceae and interacting with invertebrates (insects and nematodes). RESULTS: RGPs account for about 60% of the genome in each of the four genomes studied. We classified RGPs into genomic islands (GIs), prophages and two new classes of RGP without the features of classical mobile genetic elements (MGEs) but harboring genes encoding enzymes catalyzing DNA recombination (RGPmob), or with no remarkable feature (RGPnone). These new classes accounted for most of the RGPs and are probably hypervariable regions, ancient MGEs with degraded mobilization machinery or non canonical MGEs for which the mobility mechanism has yet to be described. We provide evidence that not only the GIs and the prophages, but also RGPmob and RGPnone, have a mosaic structure consisting of modules. A module is a block of genes, 0.5 to 60 kb in length, displaying a conserved genomic organization among the different Enterobacteriaceae. Modules are functional units involved in host/environment interactions (22-31%), metabolism (22-27%), intracellular or intercellular DNA mobility (13-30%), drug resistance (4-5%) and antibiotic synthesis (3-6%). Finally, in silico comparisons and PCR multiplex analysis indicated that these modules served as plasticity units within the bacterial genome during genome speciation and as deletion units in clonal variants of Photorhabdus. CONCLUSIONS: This led us to consider the modules, rather than the entire RGP, as the true unit of plasticity in bacterial genomes, during both short-term and long-term genome evolution.


Asunto(s)
Genoma Bacteriano/genética , Genómica/métodos , Interacciones Huésped-Patógeno/genética , Invertebrados/microbiología , Photorhabdus/genética , Xenorhabdus/genética , Animales , Mapeo Cromosómico , Cromosomas Bacterianos/genética , Evolución Molecular , Femenino , Reordenamiento Génico/genética , Genes Bacterianos/genética , Sitios Genéticos/genética , Variación Genética , Humanos , Filogenia , ARN Ribosómico 16S/genética , Eliminación de Secuencia/genética , Sintenía/genética , Factores de Tiempo
14.
Environ Microbiol ; 12(4): 951-63, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20074236

RESUMEN

Vibrio splendidus, strain LGP32, is an oyster pathogen associated with the summer mortalities affecting the production of Crassostrea gigas oysters worldwide. Vibrio splendidus LGP32 was shown to resist to up to 10 microM Cg-Def defensin and Cg-BPI bactericidal permeability increasing protein, two antimicrobial peptides/proteins (AMPs) involved in C. gigas immunity. The resistance to both oyster Cg-Def and Cg-BPI and standard AMPs (polymyxin B, protegrin, human BPI) was dependent on the ompU gene. Indeed, upon ompU inactivation, minimal bactericidal concentrations decreased by up to fourfold. AMP resistance was restored upon ectopic expression of ompU. The susceptibility of bacterial membranes to AMP-induced damages was independent of the ompU-mediated AMP resistance. Besides its role in AMP resistance, ompU proved to be essential for the adherence of V. splendidus LGP32 to fibronectin. Interestingly, in vivo, ompU was identified as a major determinant of V. splendidus pathogenicity in oyster experimental infections. Indeed, the V. splendidus-induced oyster mortalities dropped from 56% to 11% upon ompU mutation (Kaplan-Meier survival curves, P < 0.01). Moreover, in co-infection assays, the ompU mutant was out competed by the wild-type strain with competitive indexes in the range of 0.1-0.2. From this study, ompU is required for virulence of V. splendidus. Contributing to AMP resistance, conferring adhesive properties to V. splendidus, and being essential for in vivo fitness, the OmpU porin appears as an essential effector of the C. gigas/V. splendidus interaction.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Crassostrea/microbiología , Vibriosis/microbiología , Vibrio/patogenicidad , Adhesinas Bacterianas/genética , Animales , Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas Sanguíneas/inmunología , Crassostrea/inmunología , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Mutación , Vibrio/genética , Virulencia
15.
Mol Microbiol ; 68(2): 516-33, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18383616

RESUMEN

There is a complex interplay between the regulation of flagellar motility and the expression of virulence factors in many bacterial pathogens. We investigated the role of FliZ in the regulation of flagellar and virulence genes in Xenorhabdus nematophila, an insect pathogen. The fliZ gene is the second gene in the fliAZ operon in X. nematophila. In vivo transcription analysis revealed a positive feedback loop of fliAZ transcription in which FliZ activates flhDC, the master operon of flagellar regulon in X. nematophila, leading to an increased transcription of the FlhDC-dependent promoter of fliAZ. We also showed that fliAZ and flhDC mutants lacked motility, had no haemolysin or Tween lipase activity and displayed an attenuated virulence phenotype in insects. Lipase activity is controlled by FliA, whereas haemolysin production and full virulence phenotype have been reported to be FliZ-dependent. Transcriptional analysis revealed that FliZ directly controlled expression of the xhlBA and xaxAB operons, which encode haemolysins from the two-partner secretion system and the binary XaxAB toxin family respectively. We suggest that this regulatory pathway may also occur in other pathogenic enterobacteria with genes encoding members of these two growing families of haemolysins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelina/biosíntesis , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas Hemolisinas/genética , Locomoción , Xenorhabdus/fisiología , Animales , Fusión Artificial Génica , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Toxinas Bacterianas/biosíntesis , Retroalimentación Fisiológica , Flagelina/genética , Eliminación de Gen , Genes Reporteros , Glucuronidasa/genética , Glucuronidasa/metabolismo , Larva/microbiología , Lipasa/metabolismo , Modelos Biológicos , Operón , Factor sigma/genética , Factor sigma/metabolismo , Spodoptera/microbiología , Análisis de Supervivencia , Sitio de Iniciación de la Transcripción , Transcripción Genética/fisiología , Activación Transcripcional/fisiología , Virulencia , Xenorhabdus/genética , Xenorhabdus/crecimiento & desarrollo , Xenorhabdus/patogenicidad
16.
Mol Biotechnol ; 43(2): 97-103, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19462262

RESUMEN

Photorhabdus temperata and Bacillus thuringiensis are entomopathogenic bacteria exhibiting toxicities against different insect larvae. Vegetative Insecticidal Protein Vip3LB is a Bacillus thuringiensis insecticidal protein secreted during the vegetative growth stage exhibiting lepidopteran specificity. In this study, we focused for the first time on the heterologous expression of vip3LB gene in Photorhabdus temperata strain K122. Firstly, Western blot analyses of whole cultures of recombinant Photorhabdus temperata showed that Vip3LB was produced and appeared lightly proteolysed. Cellular fractionation and proteinase K proteolysis showed that in vitro-cultured recombinant Photorhabdus temperata K122 accumulated Vip3LB in the cell and appeared not to secrete this protein. Oral toxicity of whole cultures of recombinant Photorhabdus temperata K122 strains was assayed on second-instar larvae of Ephestia kuehniella, a laboratory model insect, and the cutworm Spodoptera littoralis, one of the major pests of many important crop plants. Unlike the wild strain K122, which has no effect on the larval growth, the recombinant bacteria expressing vip3LB gene reduced or stopped the larval growth. These results demonstrate that the heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata could be considered as an excellent tool for improving Photorhabdus insecticidal activities.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Lepidópteros/crecimiento & desarrollo , Control Biológico de Vectores/métodos , Photorhabdus/genética , Administración Oral , Animales , Proteínas Bacterianas/administración & dosificación , Insecticidas/administración & dosificación , Insecticidas/metabolismo , Larva , Photorhabdus/clasificación , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Especificidad de la Especie
17.
PLoS One ; 14(2): e0212077, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30763358

RESUMEN

Photorhabdus luminescens is an enterobacterium establishing a mutualistic symbiosis with nematodes, that also kills insects after septicaemia and connective tissue colonization. The role of the bacterial mdtABC genes encoding a putative multidrug efflux system from the resistance/nodulation/cell division family was investigated. We showed that a mdtA mutant and the wild type had similar levels of resistance to antibiotics, antimicrobial peptides, metals, detergents and bile salts. The mdtA mutant was also as pathogenic as the wild-type following intrahaemocoel injection in Locusta migratoria, but had a slightly attenuated phenotype in Spodoptera littoralis. A transcriptional fusion of the mdtA promoter (PmdtA) and the green fluorescent protein (gfp) encoding gene was induced by copper in bacteria cultured in vitro. The PmdtA-gfp fusion was strongly induced within bacterial aggregates in the haematopoietic organ during late stages of infection in L. migratoria, whereas it was only weakly expressed in insect plasma throughout infection. A medium supplemented with haematopoietic organ extracts induced the PmdtA-gfp fusion ex vivo, suggesting that site-specific mdtABC expression resulted from insect signals from the haematopoietic organ. Finally, we showed that protease inhibitors abolished ex vivo activity of the PmdtA-gfp fusion in the presence of haematopoietic organ extracts, suggesting that proteolysis by-products play a key role in upregulating the putative MdtABC efflux pump during insect infection with P. luminescens.


Asunto(s)
Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Locusta migratoria/microbiología , Péptido Hidrolasas/metabolismo , Photorhabdus/genética , Photorhabdus/fisiología , Animales , Antibacterianos/farmacología , Cobre/farmacología , Genes MDR/genética , Pruebas de Sensibilidad Microbiana , Mutación , Operón/genética , Fenotipo , Photorhabdus/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Transcripción Genética/efectos de los fármacos
18.
mBio ; 10(5)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594811

RESUMEN

Bacterial infections are often composed of cells with distinct phenotypes that can be produced by genetic or epigenetic mechanisms. This phenotypic heterogeneity has proved to be important in many pathogens, because it can alter both pathogenicity and transmission. We studied how and why it can emerge during infection in the bacterium Xenorhabdus nematophila, a pathogen that kills insects and multiplies in the cadaver before being transmitted by the soil nematode vector Steinernema carpocapsae We found that phenotypic variants cluster in three groups, one of which is composed of lrp defective mutants. These mutants, together with variants of another group, have in common that they maintain high survival during late stationary phase. This probably explains why they increase in frequency: variants of X. nematophila with a growth advantage in stationary phase (GASP) are under strong positive selection both in prolonged culture and in late infections. We also found that the within-host advantage of these variants seems to trade off against transmission by nematode vectors: the variants that reach the highest load in insects are those that are the least transmitted.IMPORTANCE Pathogens can evolve inside their host, and the importance of this mutation-fueled process is increasingly recognized. A disease outcome may indeed depend in part on pathogen adaptations that emerge during infection. It is therefore important to document these adaptations and the conditions that drive them. In our study, we took advantage of the possibility to monitor within-host evolution in the insect pathogen X. nematophila We demonstrated that selection occurring in aged infection favors lrp defective mutants, because these metabolic mutants benefit from a growth advantage in stationary phase (GASP). We also demonstrated that these mutants have reduced virulence and impaired transmission, modifying the infection outcome. Beyond the specific case of X. nematophila, we propose that metabolic mutants are to be found in other bacterial pathogens that stay for many generations inside their host.


Asunto(s)
Variación Biológica Poblacional , Variación Genética , Infecciones por Bacterias Gramnegativas/veterinaria , Insectos Vectores/microbiología , Microbiota , Rabdítidos/microbiología , Xenorhabdus/fisiología , Animales , Infecciones por Bacterias Gramnegativas/microbiología , Mutación , Selección Genética , Xenorhabdus/clasificación , Xenorhabdus/genética
19.
Infect Genet Evol ; 70: 131-139, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790700

RESUMEN

Entomopathogenic nematodes (EPNs) form specific mutualistic associations with bioluminescent enterobacteria. In Heterorhabditidis indica, Ochrobactrum spp. was identified beside the symbiont Photorhabdus luminescens but its involvement in the symbiotic association in the EPNs remains unclear. This study describe the population structure and the diversity in Ochrobactrum natural populations isolated from EPNs in the Caribbean basin in order to question the existence of EPN-specialized clones and to gain a better insight into Ochrobactrum-EPNs relationships. EPN-associated Ochrobactrum and Photorhabdus strains were characterized by multi-locus sequence typing, Pulsed-Field Gel Electrophoresis fingerprinting and phenotypic traits. Population study showed the absence of EPN-specialized clones in O. intermedium and O. anthropi but suggested the success of some particular lineages. A low level of genetic and genomic diversification of Ochrobactrum isolated from the natural population of Caribbean nematodes was observed comparatively to the diversity of human-associated Ochrobactrum strains. Correspondences between Ochrobactrum and P. luminescens PFGE clusters have been observed, particularly in the case of nematodes from Dominican Republic and Puerto Rico. O. intermedium and O. anthropi associated to EPNs formed less biofilm than human-associated strains. These results evoke interactions between Ochrobactrum and the EPN symbiotic system rather than transient contamination. The main hypothesis to investigate is a toxic/antitoxic relationship because of the ability of Ochrobactrum to resist to antimicrobial and toxic compounds produced by Photorhabdus.


Asunto(s)
Nematodos/microbiología , Ochrobactrum/genética , Animales , Región del Caribe/epidemiología , República Dominicana/epidemiología , Genética de Población , Humanos , Tipificación de Secuencias Multilocus , Photorhabdus , Filogenia , Puerto Rico/epidemiología , Simbiosis
20.
PLoS One ; 14(10): e0212655, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31596856

RESUMEN

Photorhabdus luminescens is an entomopathogenic bacterium found in symbiosis with the nematode Heterorhabditis. Dam DNA methylation is involved in the pathogenicity of many bacteria, including P. luminescens, whereas studies about the role of bacterial DNA methylation during symbiosis are scarce. The aim of this study was to determine the role of Dam DNA methylation in P. luminescens during the whole bacterial life cycle including during symbiosis with H. bacteriophora. We constructed a strain overexpressing dam by inserting an additional copy of the dam gene under the control of a constitutive promoter in the chromosome of P. luminescens and then achieved association between this recombinant strain and nematodes. The dam overexpressing strain was able to feed the nematode in vitro and in vivo similarly as a control strain, and to re-associate with Infective Juvenile (IJ) stages in the insect. No difference in the amount of emerging IJs from the cadaver was observed between the two strains. Compared to the nematode in symbiosis with the control strain, a significant increase in LT50 was observed during insect infestation with the nematode associated with the dam overexpressing strain. These results suggest that during the life cycle of P. luminescens, Dam is not involved the bacterial symbiosis with the nematode H. bacteriophora, but it contributes to the pathogenicity of the nemato-bacterial complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Insectos/microbiología , Nematodos/microbiología , Photorhabdus/enzimología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Simbiosis/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA