Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 113(1): 32-39, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23661718

RESUMEN

RATIONALE: Arteriogenesis, the shear stress-driven remodeling of collateral arteries, is critical in restoring blood flow to ischemic tissue after a vascular occlusion. Our previous work has shown that the adaptor protein Shc mediates endothelial responses to shear stress in vitro. OBJECTIVE: To examine the role of the adaptor protein Shc in arteriogenesis and endothelial-dependent responses to shear stress in vivo. METHODS AND RESULTS: Conditional knockout mice in which Shc is deleted from endothelial cells were subjected to femoral artery ligation. Hindlimb perfusion recovery was attenuated in Shc conditional knockout mice compared with littermate controls. Reduced perfusion was associated with blunted collateral remodeling and reduced capillary density. Bone marrow transplantation experiments revealed that endothelial Shc is required for perfusion recovery because loss of Shc in bone marrow-derived hematopoietic cells had no effect on recovery. Mechanistically, Shc deficiency resulted in impaired activation of the nuclear factor κ-light-chain-enhancer of activated B-cell-dependent inflammatory pathway and reduced CD45⁺ cell infiltration. Unexpectedly, Shc was required for arterial specification of the remodeling arteriole by mediating upregulation of the arterial endothelial cell marker ephrinB2 and activation of the Notch pathway. In vitro experiments confirmed that Shc was required for shear stress-induced activation of the Notch pathway and downstream arterial specification through a mechanism that involves upregulation of Notch ligands delta-like 1 and delta-like 4. CONCLUSIONS: Shc mediates activation of 2 key signaling pathways that are critical for inflammation and arterial specification; collectively, these pathways contribute to arteriogenesis and the recovery of blood perfusion.


Asunto(s)
Arteritis/etiología , Isquemia/fisiopatología , FN-kappa B/fisiología , Neovascularización Fisiológica/genética , Receptores Notch/fisiología , Proteínas Adaptadoras de la Señalización Shc/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Arteritis/genética , Trasplante de Médula Ósea , Proteínas de Unión al Calcio , Adhesión Celular , Circulación Colateral , Células Endoteliales/metabolismo , Efrina-B2/fisiología , Arteria Femoral/cirugía , Genes Sintéticos , Células Madre Hematopoyéticas/metabolismo , Hemorreología , Miembro Posterior/irrigación sanguínea , Péptidos y Proteínas de Señalización Intercelular/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Leucocitos/fisiología , Ligadura , Masculino , Mecanorreceptores/fisiología , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas Adaptadoras de la Señalización Shc/deficiencia , Proteínas Adaptadoras de la Señalización Shc/genética , Transducción de Señal , Estrés Mecánico
2.
J Heart Lung Transplant ; 42(5): 575-584, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36707296

RESUMEN

BACKGROUND: In lung transplantation, ischemia-reperfusion injury associated with mitochondrial damage can lead to graft rejection. Intact, exogenous mitochondria provide a unique treatment option to salvage damaged cells within lung tissue. METHODS: We developed a novel method to freeze and store allogeneic mitochondria isolated from porcine heart tissue. Stored mitochondria were injected into a model of induced ischemia-reperfusion injury using porcine ex-vivo lung perfusion. Treatment benefits to immune modulation, antioxidant defense, and cellular salvage were evaluated. These findings were corroborated in human lungs undergoing ex-vivo lung perfusion. Lung tissue homogenate and primary lung endothelial cells were then used to address underlying mechanisms. RESULTS: Following cold ischemia, mitochondrial transplant reduced lung pulmonary vascular resistance and tissue pro-inflammatory signaling and cytokine secretion. Further, exogenous mitochondria reduced reactive oxygen species by-products and promoted glutathione synthesis, thereby salvaging cell viability. These results were confirmed in a human model of ex-vivo lung perfusion wherein transplanted mitochondria decreased tissue oxidative and inflammatory signaling, improving lung function. We demonstrate that transplanted mitochondria induce autophagy and suggest that bolstered autophagy may act upstream of the anti-inflammatory and antioxidant benefits. Importantly, chemical inhibitors of the MEK autophagy pathway blunted the favorable effects of mitochondrial transplant. CONCLUSIONS: These data provide direct evidence that mitochondrial transplant improves cellular health and lung function when administered during ex-vivo lung perfusion and suggest the mechanism of action may be through promotion of cellular autophagy. Data herein contribute new insights into the therapeutic potential of mitochondrial transplant to abate ischemia-reperfusion injury during lung transplant, and thus reduce graft rejection.


Asunto(s)
Trasplante de Pulmón , Daño por Reperfusión , Humanos , Porcinos , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Pulmón , Reperfusión , Mitocondrias/metabolismo , Trasplante de Pulmón/métodos , Isquemia , Daño por Reperfusión/metabolismo , Perfusión/métodos
3.
Sci Adv ; 7(28)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34244146

RESUMEN

The response of endothelial cells to mechanical forces is a critical determinant of vascular health. Vascular pathologies, such as atherosclerosis, characterized by abnormal mechanical forces are frequently accompanied by endothelial-to-mesenchymal transition (EndMT). However, how forces affect the mechanotransduction pathways controlling cellular plasticity, inflammation, and, ultimately, vessel pathology is poorly understood. Here, we identify a mechanoreceptor that is sui generis for EndMT and unveil a molecular Alk5-Shc pathway that leads to EndMT and atherosclerosis. Depletion of Alk5 abrogates shear stress-induced EndMT responses, and genetic targeting of endothelial Shc reduces EndMT and atherosclerosis in areas of disturbed flow. Tensional force and reconstitution experiments reveal a mechanosensory function for Alk5 in EndMT signaling that is unique and independent of other mechanosensors. Our findings are of fundamental importance for understanding how mechanical forces regulate biochemical signaling, cell plasticity, and vascular disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA