Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Allergy ; 77(1): 258-270, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519053

RESUMEN

BACKGROUND: Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the four structural proteins of SARS-CoV-2. METHODS: VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography, and characterized by tunable-resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals demonstrated the immune potency of the formulated VLP vaccine. RESULTS: Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN-adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1-biased T-cell responses, reduced virus load, and prevented lung pathology upon live virus challenge in vaccinated animals. CONCLUSION: These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect animals from developing COVID-19 infection following vaccination.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Células HEK293 , Humanos , SARS-CoV-2
2.
Adv Exp Med Biol ; 1077: 317-342, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357696

RESUMEN

Bioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manufacturing nano scale bioceramics. These nano scale bioceramics are used for regeneration of bone and cartilage both alone or with other types of biomaterials. They can also act as carrier for the delivery of drugs in musculoskeletal infections without causing any systemic toxicity.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Cerámica , Nanoestructuras , Osteogénesis , Proliferación Celular , Humanos , Células Madre Mesenquimatosas , Andamios del Tejido
3.
Stem Cell Rev Rep ; 20(6): 1406-1419, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38684571

RESUMEN

Malfunction in spermatogenesis due to genetic diseases, trauma, congenital disorders or gonadotoxic treatments results in infertility in approximately 7% of males. The behavior of spermatogonial stem cells (SSCs) within three-dimensional, multifactorial, and dynamic microenvironment implicates a niche that serves as a repository for fertility, since can serve as a source of mature and functional male germ cells. Current protocols enable reprogramming of mature somatic cells into induced pluripotent stem cells (iPSCs) and their limited differentiation to SSCs within the range of 0-5%. However, the resulting human iPSC-derived haploid spermatogenic germ cell yield in terms of number and functionality is currently insufficient for transfer to infertility clinic as a therapeutic tool. In this article, we reviewed the evolution of experimental culture platforms and introduced a novel iPSCs-based approach for in vitro spermatogenesis based on a niche perspective bearing cellular, chemical, and physical factors that provide the complex arrangement of testicular seminiferous tubules embedded within a vascularized stroma. We believe that bioengineered organoids supported by smart bio-printed tubules and microfluidic organ-on-a-chip systems offer efficient, precise, personalized platforms for autologous pluripotent stem cell sources to undergo the spermatogenetic cycle, presenting a promising tool for infertile male patients with complete testicular aplasia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Espermatogénesis , Humanos , Masculino , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Nicho de Células Madre
4.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742709

RESUMEN

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Asunto(s)
Colitis , Mucosa Intestinal , Células Madre Mesenquimatosas , Receptores CXCR4 , Regeneración , Animales , Ratones , Células de la Médula Ósea/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Colitis/inducido químicamente , Colitis/patología , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Receptores CXCR4/metabolismo , Receptores CXCR4/genética
5.
Methods Mol Biol ; 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37801256

RESUMEN

Flow cytometry and immunohistochemistry techniques both determine the target protein by immunolabeling. Flow cytometric analysis quantifies total number of fluorescent labeled cells and qualify sup-populations according to size and granularity. Immunohistochemistry is able to map immune-labeled cells and extracellular matrix components under light and electron microscope by enzyme or fluorescent molecules. Real-time identification, in-time classification, and final plotting of spermatogonial lineage are of crucial importance for monitoring the fertility potential of spermatogonial stem cell microenvironment and predicting progress of spermatogenesis. Here we define the evaluation of mouse male germ cell microenvironment at single cell and whole tissue section levels by using flow cytometric and immunohistochemical approaches.

6.
Stem Cell Res Ther ; 14(1): 127, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170113

RESUMEN

BACKGROUND: Childhood cancer treatment-induced gonadotoxicity causes permanent infertility/sub-infertility in nearly half of males. The current clinical and experimental approaches are limited to cryopreservation of prepubertal testicular strips and in vitro spermatogenesis which are inadequate to achieve the expanded spermatogonial stem/progenitor cells and spermatogenesis in vitro. Recently, we reported the supportive effect of bone marrow-derived mesenchymal cell co-culture which is inadequate after 14 days of culture in static conditions in prepubertal mouse testis due to lack of microvascular flow and diffusion. Therefore, we generated a novel, pumpless, single polydimethylsiloxane-layered testis-on-chip platform providing a continuous and stabilized microfluidic flow and real-time cellular paracrine contribution of allogeneic bone marrow-derived mesenchymal stem cells. METHODS: We aimed to evaluate the efficacy of this new setup in terms of self-renewal of stem/progenitor cells, spermatogenesis and structural and functional maturation of seminiferous tubules in vitro by measuring the number of undifferentiated and differentiating spermatogonia, spermatocytes, spermatids and tubular growth by histochemical, immunohistochemical, flow cytometric and chromatographic techniques. RESULTS: Bone marrow-derived mesenchymal stem cell-based testis-on-chip platform supported the maintenance of SALL4(+) and PLZF(+) spermatogonial stem/progenitor cells, for 42 days. The new setup improved in vitro spermatogenesis in terms of c-Kit(+) differentiating spermatogonia, VASA(+) total germ cells, the meiotic cells including spermatocytes and spermatids and testicular maturation by increasing testosterone concentration and improved tubular growth for 42 days in comparison with hanging drop and non-mesenchymal stem cell control. CONCLUSIONS: Future fertility preservation for male pediatric cancer survivors depends on the protection/expansion of spermatogonial stem/progenitor cell pool and induction of in vitro spermatogenesis. Our findings demonstrate that a novel bone marrow-derived mesenchymal stem cell-based microfluidic testis-on-chip device supporting the maintenance of stem cells and spermatogenesis in prepubertal mice in vitro. This new, cell therapy-based microfluidic platform may contribute to a safe, precision-based cell and tissue banking protocols for prepubertal fertility restoration in future.


Asunto(s)
Células de Sertoli , Espermatogénesis , Masculino , Ratones , Animales , Animales Recién Nacidos , Medios de Cultivo Condicionados , Espermatogénesis/fisiología , Testículo , Espermatogonias , Células Madre
7.
JOR Spine ; 6(3): e1258, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37780828

RESUMEN

Background: Bone morphogenetic protein 2 (BMP2) can enhance posterolateral spinal fusion (PLSF). The minimum effective dose that may stimulate mesenchymal stem cells however remains unknown. Nano-hydroxyapatite (nHAp) polyethylene glycol (PEG)/polylactic acid (PLA) was combined with recombinant human BMP2 (rhBMP2). We in vitro evaluated proliferation, differentiation, and osteogenic genes of human bone marrow mesenchymal stem cells with 0.5, 1.0, and 3.0 µg/mL rhBMP2 doses in this study. Methods: In vitro experimental study was designed to proliferation by a real-time quantitative cell analysis system and the osteogenic differentiation by alkaline phosphatase (ALP) activity and osteogenic marker (Runx2, OPN, and OCN) gene expressions of human derived bone marrow mesenchymal stem cells (hBMMSCs). nHAp was produced by wet chemical process and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. PEG/PLA polymer was produced at a 51:49 molar ratio. 0.5, 1.0, and 3.0 µg/mL rhBMP2 and nHAp was combined with the polymers. hBMMSCs were characterized by multipotency assays and surface markers were assessed by flow cytometer. The hBMMSC-rhBMP2 containing nHAp-PEG/PLA composite interaction was evaluated by transmission electron microscopy. Proliferative effect was evaluated by real-time proliferation analysis, and osteogenic capacity was evaluated by ALP activity assay and qPCR. Results: hBMMSC proliferation in the 0.5 µg/mL rhBMP2 + nHAp-PEG/PLA and the 1.0 µg/mL rhBMP2 + nHAp-PEG/PLA groups were higher compared to control. 1.0 µg/mL rhBMP2 + nHAp-PEG/PLA and 3.0 µg/mL rhBMP2 + nHAp-PEG/PLA containing composites induced ALP activity on days 3 and 10. 0.5 µg/mL rhBMP2 + nHAp-PEG/PLA application stimulated Runx2 and OPN gene expressions. Conclusion: rhBMP2 + nHAp-PEG/PLA composites stimulate hBMMSC proliferation and differentiation. The nHAp-PEG/PLA composite with low dose of rhBMP2 may enhance bone formation in future clinical PLSF applications.

8.
Sci Rep ; 11(1): 18161, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518586

RESUMEN

Megaconial Congenital Muscular Dystrophy (CMD) is a rare autosomal recessive disorder characterized by enlarged mitochondria located mainly at the periphery of muscle fibers and caused by mutations in the Choline Kinase Beta (CHKB) gene. Although the pathogenesis of this disease is not well understood, there is accumulating evidence for the presence of mitochondrial dysfunction. In this study, we aimed to investigate whether imbalanced mitochondrial dynamics affects mitochondrial function and bioenergetic efficiency in skeletal muscle cells of Megaconial CMD. Immunofluorescence, confocal and transmission electron microscopy studies revealed impaired mitochondrial network, morphology, and localization in primary skeletal muscle cells of Megaconial CMD. The organelle disruption was specific only to skeletal muscle cells grown in culture. The expression levels of mitochondrial fission proteins (DRP1, MFF, FIS1) were found to be decreased significantly in both primary skeletal muscle cells and tissue sections of Megaconial CMD by Western blotting and/or immunofluorescence analysis. The metabolomic and fluxomic analysis, which were performed in Megaconial CMD for the first time, revealed decreased levels of phosphonucleotides, Krebs cycle intermediates, ATP, and altered energy metabolism pathways. Our results indicate that reduced mitochondrial fission and altered mitochondrial energy metabolism contribute to mitochondrial dysmorphology and dysfunction in the pathogenesis of Megaconial CMD.


Asunto(s)
Metabolismo Energético , Dinámicas Mitocondriales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Células Cultivadas , Fluorescencia , Humanos , Análisis de Flujos Metabólicos , Metabolómica , Proteínas Mitocondriales/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/ultraestructura
9.
Sci Rep ; 11(1): 7505, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820917

RESUMEN

Desmin is a muscle-specific intermediate filament protein that has fundamental role in muscle structure and force transmission. Whereas human desmin protein is encoded by a single gene, two desmin paralogs (desma and desmb) exist in zebrafish. Desma and desmb show differential spatiotemporal expression during zebrafish embryonic and larval development, being similarly expressed in skeletal muscle until hatching, after which expression of desmb shifts to gut smooth muscle. We generated knockout (KO) mutant lines carrying loss-of-function mutations for each gene by using CRISPR/Cas9. Mutants are viable and fertile, and lack obvious skeletal muscle, heart or intestinal defects. In contrast to morphants, knockout of each gene did not cause any overt muscular phenotype, but did alter calcium flux in myofibres. These results point to a possible compensation mechanism in these mutant lines generated by targeting nonsense mutations to the first coding exon.


Asunto(s)
Calcio/metabolismo , Desmina/genética , Técnicas de Inactivación de Genes , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Pez Cebra/genética , Animales , Secuencia de Bases , Desmina/metabolismo , Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/ultraestructura , Mutación/genética , Unión Neuromuscular/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra/embriología
10.
Spine J ; 21(5): 865-873, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33493682

RESUMEN

BACKGROUND: Efficient bone regeneration using recombinant human bone morphogenetic protein-2 (BMP-2) is needed to reduce side effects caused by high-dose BMP-2 use. The composite material of polylactic acid-polyethene glycol (PLA-PEG) for sustained release and an osteogenic nano-hydroxyapatite (nHAp) can contribute to efficient bone regeneration by BMP-2. STUDY DESIGN: An experimental in vitro and in vivo study. PURPOSE: The objective of this study is to investigate the effectiveness of a novel composite material of PLA-PEG and nHAp as a carrier for BMP-2. METHODS: The release kinetics of BMP-2 from the composites was investigated by ELISA. Thirty-six male Sprague-Dawley rats underwent posterolateral spinal fusion on L4-L5 with three different doses of BMP-2 (0 µg [control], 3 µg [low dose], and 10 µg [high dose]). Weekly µCT results and histology and a manual palpation test at 8 weeks postoperatively were used for assessment of the spinal fusion. RESULTS: ELISA demonstrated the sustained release of BMP-2 until day 21. µCT and manual palpation test demonstrated a solid fusion in 91.6% (11/12) of specimens in both the low- and high-dose groups. N mice in the control group attained bony fusion (0%, 0/9). nHAp was resorbed between 2 and 4 weeks postoperatively, and regenerated fusion mass at 8 weeks postoperatively consisted of only newly formed bone. CONCLUSIONS: The nHAp/PLA-PEG composite enabled efficient bone regeneration with low-dose BMP-2. The sustained release of BMP-2 by PLA-PEG and the osteogenic and biodegradable scaffold of nHAp might contribute to efficient bone regeneration. CLINICAL SIGNIFICANCE: This novel composite material has potential in clinical applications (spinal fusion, large bone defect and non-union) by enabling efficient bone formation by BMP-2.


Asunto(s)
Durapatita , Fusión Vertebral , Animales , Proteína Morfogenética Ósea 2 , Regeneración Ósea , Masculino , Ratones , Osteogénesis , Polímeros , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta
11.
Biol Trace Elem Res ; 193(2): 364-376, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31069715

RESUMEN

Metabolic diseases or injuries damage bone structure and self-renewal capacity. Trace elements and hydroxyapatite crystals are important in the development of biomaterials to support the renewal of bone extracellular matrix. In this study, it was assumed that the boron-loaded nanometer-sized hydroxyapatite composite supports the construction of extracellular matrix by controlled boron release in order to prevent its toxic effect. In this context, boron release from nanometer-sized hydroxyapatite was calculated by ICP-MS as in large proportion within 1 h and continuing release was provided at a constant low dose. The effect of the boron-containing nanometer-sized hydroxyapatite composite on the proliferation of SaOS-2 osteoblasts and human bone marrow-derived mesenchymal stem cells was evaluated by WST-1 and compared with the effects of nano-hydroxyapatite and boric acid. Boron increased proliferation of mesenchymal stem cells at high doses and exhibited different effects on osteoblastic cell proliferation. Boron-containing nano-hydroxyapatite composites increased osteogenic differentiation of mesenchymal stem cells by increasing alkaline phosphatase activity, when compared to nano-hydroxyapatite composite and boric acid. The molecular mechanism of effective dose of boron-containing hydroxyapatite has been assessed by transcriptomic analysis and shown to affect genes involved in Wnt, TGF-ß, and response to stress signaling pathways when compared to nano-hydroxyapatite composite and boric acid. Finally, a safe osteoconductive dose range of boron-containing nano-hydroxyapatite composites for local repair of bone injuries and the molecular effect profile in the effective dose should be determined by further studies to validation of the regenerative therapeutic effect window.


Asunto(s)
Boro/farmacología , Durapatita/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacocinética , Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Boro/química , Boro/farmacocinética , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Liberación de Fármacos , Durapatita/química , Durapatita/farmacocinética , Humanos , Células Madre Mesenquimatosas/metabolismo , Nanocompuestos/química , Osteoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA