Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(15): 4559-4578, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37147850

RESUMEN

Studying intraspecific variation in multistress responses is central for predicting and managing the population dynamics of wild plant species under rapid global change. Yet, it remains a challenging goal in this field to integrate knowledge on the complex biochemical underpinnings for the targeted 'non-model' species. Here, we studied divergence in combined drought and heat responses among Northern and Southern European populations of the dune plant Cakile maritima, by combining comprehensive plant phenotyping with metabolic profiling via FT-ICR-MS and UPLC-TQ-MS/MS. We observed pronounced constitutive divergence in growth phenology, leaf functional traits, and defence chemistry (glucosinolates and alkaloids) among population origins. Most importantly, the magnitude of growth reduction under drought was partly weaker in southern plants and associated with divergence in plastic growth responses (leaf abscission) and the modulation of primary and specialized metabolites with known central functions not only in plant abiotic but also in biotic stress responses. Our study indicates that divergent selection has shaped the constitutive and drought-/heat-induced expression of numerous morphological and biochemical functional traits to mediate higher abiotic stress resistance in southern Cakile populations, and highlights that metabolomics can be a powerful tool to explore the underlying mechanisms of local adaptation in 'non-model' species.


Asunto(s)
Sequías , Calor , Espectrometría de Masas en Tándem , Plantas , Estrés Fisiológico , Fenotipo
2.
Metabolites ; 12(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36557259

RESUMEN

Neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's disease (AD), the prevalence of which is rapidly rising due to an aging world population and westernization of lifestyles, are expected to put a strong socioeconomic burden on health systems worldwide. Clinical trials of therapies against PD and AD have only shown limited success so far. Therefore, research has extended its scope to a systems medicine point of view, with a particular focus on the gastrointestinal-brain axis as a potential main actor in disease development and progression. Microbiome and metabolome studies have already revealed important insights into disease mechanisms. Both the microbiome and metabolome can be easily manipulated by dietary and lifestyle interventions, and might thus offer novel, readily available therapeutic options to prevent the onset as well as the progression of PD and AD. This review summarizes our current knowledge on the interplay between microbiota, metabolites, and neurodegeneration along the gastrointestinal-brain axis. We further illustrate state-of-the art methods of microbiome and metabolome research as well as metabolic modeling that facilitate the identification of disease pathomechanisms. We conclude with therapeutic options to modulate microbiome composition to prevent or delay neurodegeneration and illustrate potential future research directions to fight PD and AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA