Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134411

RESUMEN

Studies of bacterial adaptation and evolution are hampered by the difficulty of measuring traits such as virulence, drug resistance, and transmissibility in large populations. In contrast, it is now feasible to obtain high-quality complete assemblies of many bacterial genomes thanks to scalable high-accuracy long-read sequencing technologies. To exploit this opportunity, we introduce a phenotype- and alignment-free method for discovering coselected and epistatically interacting genomic variation from genome assemblies covering both core and accessory parts of genomes. Our approach uses a compact colored de Bruijn graph to approximate the intragenome distances between pairs of loci for a collection of bacterial genomes to account for the impacts of linkage disequilibrium (LD). We demonstrate the versatility of our approach to efficiently identify associations between loci linked with drug resistance and adaptation to the hospital niche in the major human bacterial pathogens Streptococcus pneumoniae and Enterococcus faecalis.

2.
Genome Res ; 33(1): 129-140, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669850

RESUMEN

Horizontal gene transfer (HGT) plays a critical role in the evolution and diversification of many microbial species. The resulting dynamics of gene gain and loss can have important implications for the development of antibiotic resistance and the design of vaccine and drug interventions. Methods for the analysis of gene presence/absence patterns typically do not account for errors introduced in the automated annotation and clustering of gene sequences. In particular, methods adapted from ecological studies, including the pangenome gene accumulation curve, can be misleading as they may reflect the underlying diversity in the temporal sampling of genomes rather than a difference in the dynamics of HGT. Here, we introduce Panstripe, a method based on generalized linear regression that is robust to population structure, sampling bias, and errors in the predicted presence/absence of genes. We show using simulations that Panstripe can effectively identify differences in the rate and number of genes involved in HGT events, and illustrate its capability by analyzing several diverse bacterial genome data sets representing major human pathogens.


Asunto(s)
Evolución Molecular , Células Procariotas , Humanos , Filogenia , Genoma Bacteriano , Transferencia de Gen Horizontal
3.
Genome Res ; 29(2): 304-316, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30679308

RESUMEN

The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology. Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic variation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in large data sets spanning entire species. Here, we describe PopPUNK (Population Partitioning Using Nucleotide K -mers), a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clustering. Variable-length k-mer comparisons are used to distinguish isolates' divergence in shared sequence and gene content, which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species' diverse evolutionary patterns. PopPUNK can process 103-104 genomes in a single batch, with minimal memory use and runtimes up to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with consistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and typing methods, and has potential uses across bacterial genetics and public health research.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Genoma Bacteriano , Programas Informáticos , Bacterias/clasificación , Infecciones Bacterianas/epidemiología , Variación Genética , Genómica/métodos
4.
Clin Infect Dis ; 73(11): e3825-e3835, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584973

RESUMEN

BACKGROUND: The continuing impact of pneumococcal conjugate vaccines (PCVs) in regions with high pneumococcal transmission is threatened by the persistence of vaccine serotypes (VTs) and the emergence of nonvaccine serotypes (NVTs). METHODS: In 2016, we conducted a cross-sectional carriage survey (CSS5) in a community where PCV7 was first introduced in 2006 during a cluster-randomized trial conducted before nationwide introduction of PCV7 (2009) and PCV13 (2011). We estimated prevalence of PCV13 VT and NVT by age and compared these with earlier surveys before (CSS0), during (CSS1-3), and after the trial but before PCV13 (CSS4). Genomic analysis was conducted for the nontypeable pneumococci. RESULTS: Prevalence of PCV13 VT carriage decreased during the 10 years between CSS0 and CSS5 across all age groups (67.6% to 13.5%, P < .001; 59.8% to 14.4%, P < .001; 43.1% to 17.9%, P < .001; and 24.0% to 5.1%, P < .001, in <2, 2-4, 5-14, and ≥15 years, respectively). However, there was no difference between CSS4 and CSS5 in children ≥2 years and adults (children <2 years, no data). The prevalence of PCV13 NVT increased between CSS0 and CSS5 for children <2 years but decreased in older children and adults. In CSS5, serotypes 3, 6A, and 19F were the most common VT and nontypeable isolates were the most common NVT. Among nontypeable isolates, 73.0% lost the ability to express a capsule. Of these, 70.8% were from a VT background. CONCLUSIONS: The decrease in PCV13 VT that has occurred since the introduction of PCV13 appears to have plateaued. Significant carriage of these serotypes remains in all age groups.


Asunto(s)
Infecciones Neumocócicas , Adolescente , Adulto , Portador Sano/epidemiología , Niño , Estudios Transversales , Gambia/epidemiología , Humanos , Lactante , Nasofaringe , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Serogrupo , Vacunas Conjugadas
5.
Clin Infect Dis ; 70(7): 1294-1303, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31094423

RESUMEN

BACKGROUND: Pneumococcal conjugate vaccines (PCVs) have reduced pneumococcal diseases globally. Pneumococcal genomic surveys elucidate PCV effects on population structure but are rarely conducted in low-income settings despite the high disease burden. METHODS: We undertook whole-genome sequencing (WGS) of 660 pneumococcal isolates collected through surveys from healthy carriers 2 years from 13-valent PCV (PCV13) introduction and 1 year after rollout in northern Malawi. We investigated changes in population structure, within-lineage serotype dynamics, serotype diversity, and frequency of antibiotic resistance (ABR) and accessory genes. RESULTS: In children <5 years of age, frequency and diversity of vaccine serotypes (VTs) decreased significantly post-PCV, but no significant changes occurred in persons ≥5 years of age. Clearance of VT serotypes was consistent across different genetic backgrounds (lineages). There was an increase of nonvaccine serotypes (NVTs)-namely 7C, 15B/C, and 23A-in children <5 years of age, but 28F increased in both age groups. While carriage rates have been recently shown to remain stable post-PCV due to replacement serotypes, there was no change in diversity of NVTs. Additionally, frequency of intermediate-penicillin-resistant lineages decreased post-PCV. Although frequency of ABR genes remained stable, other accessory genes, especially those associated with mobile genetic element and bacteriocins, showed changes in frequency post-PCV. CONCLUSIONS: We demonstrate evidence of significant population restructuring post-PCV driven by decreasing frequency of vaccine serotypes and increasing frequency of few NVTs mainly in children under 5. Continued surveillance with WGS remains crucial to fully understand dynamics of the residual VTs and replacement NVT serotypes post-PCV.


Asunto(s)
Metagenómica , Infecciones Neumocócicas , Portador Sano/epidemiología , Niño , Humanos , Lactante , Malaui/epidemiología , Nasofaringe , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Serogrupo , Streptococcus pneumoniae/genética , Vacunas Conjugadas
6.
J Antimicrob Chemother ; 75(3): 512-520, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31789384

RESUMEN

OBJECTIVES: We reported tet(S/M) in Streptococcus pneumoniae and investigated its temporal spread in relation to nationwide clinical interventions. METHODS: We whole-genome sequenced 12 254 pneumococcal isolates from 29 countries on an Illumina HiSeq sequencer. Serotype, multilocus ST and antibiotic resistance were inferred from genomes. An SNP tree was built using Gubbins. Temporal spread was reconstructed using a birth-death model. RESULTS: We identified tet(S/M) in 131 pneumococcal isolates and none carried other known tet genes. Tetracycline susceptibility testing results were available for 121 tet(S/M)-positive isolates and all were resistant. A majority (74%) of tet(S/M)-positive isolates were from South Africa and caused invasive diseases among young children (59% HIV positive, where HIV status was available). All but two tet(S/M)-positive isolates belonged to clonal complex (CC) 230. A global phylogeny of CC230 (n=389) revealed that tet(S/M)-positive isolates formed a sublineage predicted to exhibit resistance to penicillin, co-trimoxazole, erythromycin and tetracycline. The birth-death model detected an unrecognized outbreak of this sublineage in South Africa between 2000 and 2004 with expected secondary infections (effective reproductive number, R) of ∼2.5. R declined to ∼1.0 in 2005 and <1.0 in 2012. The declining epidemic could be related to improved access to ART in 2004 and introduction of pneumococcal conjugate vaccine (PCV) in 2009. Capsular switching from vaccine serotype 14 to non-vaccine serotype 23A was observed within the sublineage. CONCLUSIONS: The prevalence of tet(S/M) in pneumococci was low and its dissemination was due to an unrecognized outbreak of CC230 in South Africa. Capsular switching in this MDR sublineage highlighted its potential to continue to cause disease in the post-PCV13 era.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Antibacterianos/farmacología , Niño , Preescolar , Farmacorresistencia Bacteriana , Humanos , Tipificación de Secuencias Multilocus , Infecciones Neumocócicas/epidemiología , Vacunas Neumococicas , Serogrupo , Sudáfrica/epidemiología , Resistencia a la Tetraciclina/genética
7.
PLoS Pathog ; 14(11): e1007438, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475919

RESUMEN

Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3-31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939-1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development.


Asunto(s)
Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Teorema de Bayes , Portador Sano/epidemiología , Evolución Molecular , Genética de Población/métodos , Humanos , Filogenia , Infecciones Neumocócicas/transmisión , Vacunas Neumococicas/inmunología , Dinámica Poblacional , Prevalencia , Serogrupo , Serotipificación/métodos , Streptococcus pneumoniae/patogenicidad , Vacunas Conjugadas , Secuenciación Completa del Genoma/métodos
8.
Clin Infect Dis ; 68(9): 1512-1521, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30165376

RESUMEN

BACKGROUND: The widespread use of pneumococcal conjugate vaccine (PCV) has brought about a dramatic decrease in pneumococci of vaccine serotypes (VTs) but nonvaccine serotypes (NVTs) have emerged. METHODS: We conducted a cross-sectional survey (CSS) among infants who received 3 doses of 13-valent PCV (PCV13) and their mothers 5 years (CSS3) after PCV13 introduction. Nasopharyngeal swab samples were collected and cultured for isolation of Streptococcus pneumoniae. Whole-genome sequencing of the nontypeable strains was performed. Data were compared with those from 2 previous surveys conducted before PCV13 introduction (CSS1) and 1 year later (CSS2). RESULTS: Among infants, VT carriage decreased from 33.3% (113/339) in CSS1 to 11.4% (40/351) in CSS3 (P = .001) while NVTs increased from 53.1% (180/339) in CSS1 to 74.4% (261/351) in CSS3 (P < .001). Among mothers, there was a significant decrease in VTs between CSS2 8.4% (29/347) and CSS3 5.6% (19/342) (P = .006). NVTs increased from 16.6% (55/331) in CSS1 to 32.2% (110/342) in CSS3 (P < .001). In CSS3, the most prevalent VTs were 7F in infants and 3 in mothers, and the most prevalent NVTs were serogroup 16 and nontypeables, respectively. Genomic analysis showed that VTs were more likely than NVTs to lose their ability to express the capsule. CONCLUSIONS: Five years after PCV13 introduction, we show both direct (infants) and indirect effects (mothers) of the vaccine, while NVT replacement has occurred in both groups. Ongoing circulation of VTs warrants further study of their relevance in any consideration of a reduced dose schedule.


Asunto(s)
Vacunas Neumococicas/administración & dosificación , Neumonía Neumocócica/prevención & control , Serogrupo , Streptococcus pneumoniae/genética , Vacunación/métodos , Adulto , Estudios Transversales , Femenino , Humanos , Inmunidad Colectiva , Lactante , Masculino , Madres , Nasofaringe/microbiología , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/microbiología , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/inmunología , Streptococcus pneumoniae/aislamiento & purificación , Secuenciación Completa del Genoma
9.
J Clin Microbiol ; 56(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118167

RESUMEN

There are at least 98 known pneumococcal serotypes. Invasive pneumococcal disease (IPD) is usually caused by a single serotype, and dual-serotype IPD is rare. To assess factors associated with dual-serotype IPD, patient information obtained through laboratory-based surveillance for IPD from 2005 through 2014 in South Africa was reviewed. Genomes of isolate pairs from coinfected individuals were sequenced to determine their molecular characteristics. For 30 (91%) of 33 patients with dual serotypes, one or both isolates were a pneumococcal conjugate vaccine (PCV13) serotype. Dual-serotype IPD was associated with children <5 years of age (adjusted odds ratio [aOR], 4.7; 95% confidence interval [95% CI], 1.8 to 11.7), underlying illness (other than HIV) (aOR, 2.8; 95% CI, 1.1 to 6.6) and death (aOR, 2.5; 95% CI, 1.08 to 6.09). For each coinfecting pair, isolates were genotypically unrelated, and their genotypes were common among isolates of the same serotype in South Africa. Of 701 accessory genes identified among dual-serotype IPD isolates, four were common between isolate pairs. Coinfecting isolate pairs had different genotypic backgrounds. The association of dual serotypes with death warrants increased awareness of IPD coinfection caused by two or more serotypes.


Asunto(s)
Coinfección , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/genética , Adulto , Factores de Edad , Anciano de 80 o más Años , Niño , Preescolar , ADN Bacteriano/genética , Femenino , Genoma Bacteriano/genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Vacunas Neumococicas/genética , Análisis de Secuencia de ADN , Serogrupo , Sudáfrica , Streptococcus pneumoniae/clasificación , Vacunas Conjugadas
10.
J Clin Microbiol ; 56(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720431

RESUMEN

A newly recognized pneumococcal serotype, 35D, which differs from the 35B polysaccharide in structure and serology by not binding to factor serum 35a, was recently reported. The genetic basis for this distinctive serology is due to the presence of an inactivating mutation in wciG, which encodes an O-acetyltransferase responsible for O-acetylation of a galactofuranose. Here, we assessed the genomic data of a worldwide pneumococcal collection to identify serotype 35D isolates and understand their geographical distribution, genetic background, and invasiveness potential. Of 21,980 pneumococcal isolates, 444 were originally typed as serotype 35B by PneumoCaT. Analysis of the wciG gene revealed 23 isolates from carriage (n = 4) and disease (n = 19) with partial or complete loss-of-function mutations, including mutations resulting in premature stop codons (n = 22) and an in-frame mutation (n = 1). These were selected for further analysis. The putative 35D isolates were geographically widespread, and 65.2% (15/23) of them was recovered after the introduction of pneumococcal conjugate vaccine 13 (PCV13). Compared with serotype 35B isolates, putative serotype 35D isolates have higher invasive disease potentials based on odds ratios (OR) (11.58; 95% confidence interval[CI], 1.42 to 94.19 versus 0.61; 95% CI, 0.40 to 0.92) and a higher prevalence of macrolide resistance mediated by mefA (26.1% versus 7.6%; P = 0.009). Using the Quellung reaction, 50% (10/20) of viable isolates were identified as serotype 35D, 25% (5/20) as serotype 35B, and 25% (5/20) as a mixture of 35B/35D. The discrepancy between phenotype and genotype requires further investigation. These findings illustrated a global distribution of an invasive serotype, 35D, among young children post-PCV13 introduction and underlined the invasive potential conferred by the loss of O-acetylation in the pneumococcal capsule.


Asunto(s)
Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas/administración & dosificación , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/patogenicidad , Portador Sano/epidemiología , Portador Sano/microbiología , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Variación Genética , Genoma Bacteriano/genética , Genotipo , Mutación , Filogenia , Infecciones Neumocócicas/prevención & control , Prevalencia , Análisis de Secuencia de ADN , Serogrupo , Streptococcus pneumoniae/genética
11.
Int J Med Microbiol ; 307(7): 415-421, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28756964

RESUMEN

Before PCV7 introduction, invasive pneumococcal disease (IPD) was responsible for approximately 12,000-18,000 deaths annually among children <5years in Latin America. In Peru, PCV7 was introduced in 2009. We used whole genome sequencing to deduce key features of invasive strains collected in Lima, Peru from 2006 to 2011. We sequenced 212 IPD isolates from 16 hospitals in Lima pre (2006-2009; n=133) and post (2010-2011; n=79) PCV7 introduction; 130 (61.3%) isolates were from children≤5years old. CDC's Streptococcus lab bioinformatics pipeline revealed serotypes, sequence types (STs), pilus genes, PBP types and other resistance determinants. During the pre-PCV7 period, serotype 14 was the most common serotype (24.8%), followed by 6B (20.3%), 19F (10.5%), and 23F (6.8%). Post-PCV7, the proportion of PCV7 serotype 6B decreased significantly (to 6.3%), while 19F (16.3%), 14 (15.0%), 23F (7.5%), and 19A (7.5%) were the most common serotypes; only serotypes 3 and 10A increased significantly. Overall, 82% (n=173) of all isolates carried at least one resistance determinant, including 72 (34%) isolates that carried resistance determinants against 3 or more antimicrobial classes; of these 72 isolates, 56 (78%) belonged to a PCV7 serotype. Eighty-two STs were identified, with 53 of them organized in 14 clonal complexes. ST frequencies were distributed differently pre and post-PCV7 introduction, with only 18 of the 57 STs identified in years 2006-2009 isolates also observed in years 2010-2011 isolates. The apparent expansion of a 19F/ST1421 lineage with predicted ß-lactam resistance (PBP type 13:16:20) and carrying resistance determinants against four additional antimicrobial classes was observed.


Asunto(s)
Infecciones Neumocócicas/microbiología , Vacunas Neumococicas , Streptococcus pneumoniae/aislamiento & purificación , Secuenciación Completa del Genoma , Adulto , Antiinfecciosos/farmacología , Preescolar , Farmacorresistencia Bacteriana , Genotipo , Humanos , Lactante , Perú , Infecciones Neumocócicas/patología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/clasificación , Vacunas Neumococicas/genética , Serogrupo , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/genética , Vacunas Conjugadas
12.
J Clin Microbiol ; 54(5): 1326-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26962082

RESUMEN

Serotype 1 is an important cause of invasive pneumococcal disease in South Africa and has declined following the introduction of the 13-valent pneumococcal conjugate vaccine in 2011. We genetically characterized 912 invasive serotype 1 isolates from 1989 to 2013. Simpson's diversity index (D) and recombination ratios were calculated. Factors associated with sequence types (STs) were assessed. Clonal complex 217 represented 96% (872/912) of the sampled isolates. Following the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13), ST diversity increased in children <5 years (D, 0.39 to 0.63, P = 0.002) and individuals >14 years (D, 0.35 to 0.54, P < 0.001): ST-217 declined proportionately in children <5 years (153/203 [75%] versus 21/37 [57%], P = 0.027) and individuals >14 years (242/305 [79%] versus 96/148 [65%], P = 0.001), whereas ST-9067 increased (4/684 [0.6%] versus 24/228 [11%], P < 0.001). Three subclades were identified within ST-217: ST-217C1 (353/382 [92%]), ST-217C2 (15/382 [4%]), and ST-217C3 (14/382 [4%]). ST-217C2, ST-217C3, and single-locus variant (SLV) ST-8314 (20/912 [2%]) were associated with nonsusceptibility to chloramphenicol, tetracycline, and co-trimoxazole. ST-8314 (20/912 [2%]) was also associated with increased nonsusceptibility to penicillin (P < 0.001). ST-217C3 and newly reported ST-9067 had higher recombination ratios than those of ST-217C1 (4.344 versus 0.091, P < 0.001; and 0.086 versus 0.013, P < 0.001, respectively). Increases in genetic diversity were noted post-PCV13, and lineages associated with antimicrobial nonsusceptibility were identified.


Asunto(s)
Variación Genética , Filogenia , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/microbiología , Serogrupo , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Sudáfrica/epidemiología , Streptococcus pneumoniae/genética , Adulto Joven
13.
NAR Genom Bioinform ; 6(2): lqae061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38846349

RESUMEN

Population genomics has revolutionized our ability to study bacterial evolution by enabling data-driven discovery of the genetic architecture of trait variation. Genome-wide association studies (GWAS) have more recently become accompanied by genome-wide epistasis and co-selection (GWES) analysis, which offers a phenotype-free approach to generating hypotheses about selective processes that simultaneously impact multiple loci across the genome. However, existing GWES methods only consider associations between distant pairs of loci within the genome due to the strong impact of linkage-disequilibrium (LD) over short distances. Based on the general functional organisation of genomes it is nevertheless expected that majority of co-selection and epistasis will act within relatively short genomic proximity, on co-variation occurring within genes and their promoter regions, and within operons. Here, we introduce LDWeaver, which enables an exhaustive GWES across both short- and long-range LD, to disentangle likely neutral co-variation from selection. We demonstrate the ability of LDWeaver to efficiently generate hypotheses about co-selection using large genomic surveys of multiple major human bacterial pathogen species and validate several findings using functional annotation and phenotypic measurements. Our approach will facilitate the study of bacterial evolution in the light of rapidly expanding population genomic data.

14.
Nat Commun ; 15(1): 5196, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890378

RESUMEN

Multi-drug resistant (MDR) E. coli constitute a major public health burden globally, reaching the highest prevalence in the global south yet frequently flowing with travellers to other regions. However, our comprehension of the entire genetic diversity of E. coli colonising local populations remains limited. We quantified this diversity, its associated antimicrobial resistance (AMR), and assessed the impact of antibiotic use by recruiting 494 outpatients and 423 community dwellers in the Punjab province, Pakistan. Rectal swab and stool samples were cultured on CLED agar and DNA extracted from plate sweeps was sequenced en masse to capture both the genetic and AMR diversity of E. coli. We assembled 5,247 E. coli genomes from 1,411 samples, displaying marked genetic diversity in gut colonisation. Compared with high income countries, the Punjabi population generally showed a markedly different distribution of genetic lineages and AMR determinants, while use of antibiotics elevated the prevalence of well-known globally circulating MDR clinical strains. These findings implicate that longitudinal multi-regional genomics-based surveillance of both colonisation and infections is a prerequisite for developing mechanistic understanding of the interplay between ecology and evolution in the maintenance and dissemination of (MDR) E. coli.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Secuenciación de Nucleótidos de Alto Rendimiento , Pakistán/epidemiología , Humanos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Antibacterianos/farmacología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , Heces/microbiología , Femenino , Masculino , Genoma Bacteriano/genética , Adulto , Variación Genética , Persona de Mediana Edad , Adulto Joven , Filogenia , Adolescente , Niño
15.
Lancet Microbe ; 5(2): e142-e150, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219757

RESUMEN

BACKGROUND: The effect of antibiotic usage on the success of multidrug-resistant (MDR) clones in a population remains unclear. With this genomics-based molecular epidemiology study, we aimed to investigate the contribution of antibiotic use to Escherichia coli clone success, relative to intra-strain competition for colonisation and infection. METHODS: We sequenced all the available E coli bloodstream infection isolates provided by the British Society for Antimicrobial Chemotherapy (BSAC) from 2012 to 2017 (n=718) and combined these with published data from the UK (2001-11; n=1090) and Norway (2002-17; n=3254). Defined daily dose (DDD) data from the European Centre for Disease Prevention and Control (retrieved on Sept 21, 2021) for major antibiotic classes (ß-lactam, tetracycline, macrolide, sulfonamide, quinolone, and non-penicillin ß-lactam) were used together with sequence typing, resistance profiling, regression analysis, and non-neutral Wright-Fisher simulation-based modelling to enable systematic comparison of resistance levels, clone success, and antibiotic usage between the UK and Norway. FINDINGS: Sequence type (ST)73, ST131, ST95, and ST69 accounted for 892 (49·3%) of 1808 isolates in the BSAC collection. In the UK, the proportion of ST69 increased between 2001-10 and 2011-17 (p=0·0004), whereas the proportions of ST73 and ST95 did not vary between periods. ST131 expanded quickly after its emergence in 2003 and its prevalence remained consistent throughout the study period (apart from a brief decrease in 2009-10). The extended-spectrum ß-lactamase (ESBL)-carrying, globally disseminated MDR clone ST131-C2 showed overall greater success in the UK (154 [56·8%] of 271 isolates in 2003-17) compared with Norway (51 [18·3%] of 278 isolates in 2002-17; p<0·0001). DDD data indicated higher total use of antimicrobials in the UK, driven mainly by the class of non-penicillin ß-lactams, which were used between 2·7-times and 5·1-times more in the UK per annum (ratio mean 3·7 [SD 0·8]). This difference was associated with the higher success of the MDR clone ST131-C2 (pseudo-R2 69·1%). A non-neutral Wright-Fisher model replicated the observed expansion of non-MDR and MDR sequence types under higher DDD regimes. INTERPRETATION: Our study indicates that resistance profiles of contemporaneously successful clones can vary substantially, warranting caution in the interpretation of correlations between aggregate measures of resistance and antibiotic usage. Our study further suggests that in countries with low-to-moderate use of antibiotics, such as the UK and Norway, the extent of non-penicillin ß-lactam use modulates rather than determines the success of widely disseminated MDR ESBL-carrying E coli clones. Detailed understanding of underlying causal drivers of success is important for improved control of resistant pathogens. FUNDING: Trond Mohn Foundation, Marie Sklodowska-Curie Actions, European Research Council, Royal Society, and Wellcome Trust.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios de Cohortes , beta-Lactamasas/genética , beta-Lactamasas/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología , Genómica , beta-Lactamas/farmacología
16.
Bioinform Adv ; 3(1): vbad027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36974068

RESUMEN

Quantification of heritability is a fundamental desideratum in genetics, which allows an assessment of the contribution of additive genetic variation to the variability of a trait of interest. The traditional computational approaches for assessing the heritability of a trait have been developed in the field of quantitative genetics. However, the rise of modern population genomics with large sample sizes has led to the development of several new machine learning-based approaches to inferring heritability. In this article, we systematically summarize recent advances in machine learning which can be used to infer heritability. We focus on an application of these methods to bacterial genomes, where heritability plays a key role in understanding phenotypes such as antibiotic resistance and virulence, which are particularly important due to the rising frequency of antimicrobial resistance. By designing a heritability model incorporating realistic patterns of genome-wide linkage disequilibrium for a frequently recombining bacterial pathogen, we test the performance of a wide spectrum of different inference methods, including also GCTA. In addition to the synthetic data benchmark, we present a comparison of the methods for antibiotic resistance traits for multiple bacterial pathogens. Insights from the benchmarking and real data analyses indicate a highly variable performance of the different methods and suggest that heritability inference would likely benefit from tailoring of the methods to the specific genetic architecture of the target organism. Availability and implementation: The R codes and data used in the numerical experiments are available at: https://github.com/tienmt/her_MLs.

17.
NAR Genom Bioinform ; 5(3): lqad066, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37435357

RESUMEN

Extrachromosomal elements of bacterial cells such as plasmids are notorious for their importance in evolution and adaptation to changing ecology. However, high-resolution population-wide analysis of plasmids has only become accessible recently with the advent of scalable long-read sequencing technology. Current typing methods for the classification of plasmids remain limited in their scope which motivated us to develop a computationally efficient approach to simultaneously recognize novel types and classify plasmids into previously identified groups. Here, we introduce mge-cluster that can easily handle thousands of input sequences which are compressed using a unitig representation in a de Bruijn graph. Our approach offers a faster runtime than existing algorithms, with moderate memory usage, and enables an intuitive visualization, classification and clustering scheme that users can explore interactively within a single framework. Mge-cluster platform for plasmid analysis can be easily distributed and replicated, enabling a consistent labelling of plasmids across past, present, and future sequence collections. We underscore the advantages of our approach by analysing a population-wide plasmid data set obtained from the opportunistic pathogen Escherichia coli, studying the prevalence of the colistin resistance gene mcr-1.1 within the plasmid population, and describing an instance of resistance plasmid transmission within a hospital environment.

18.
Nat Commun ; 14(1): 3294, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322051

RESUMEN

Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli , Infecciones por Escherichia coli/microbiología , Virulencia/genética , Factores de Virulencia/genética , Proteínas de Escherichia coli/genética , Filogenia
19.
Microb Genom ; 8(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737523

RESUMEN

Streptococcus pneumoniae is a major human pathogen responsible for over 317000 deaths in children <5 years of age with the burden of the disease being highest in low- and middle-income countries including South Africa. Following the introduction of the 7-valent and 13-valent pneumococcal conjugate vaccine (PCV) in South Africa in 2009 and 2011, respectively, a decrease in both invasive pneumococcal infections and asymptomatic carriage of vaccine-type pneumococci were reported. In this study, we described the changing epidemiology of the pneumococcal carriage population in South Africa, by sequencing the genomes of 1825 isolates collected between 2009 and 2013. Using these genomic data, we reported the changes in serotypes, Global Pneumococcal Sequence Clusters (GPSCs), and antibiotic resistance before and after the introduction of PCV13. The pneumococcal carriage population in South Africa has a high level of diversity, comprising of 126 GPSCs and 49 serotypes. Of the ten most prevalent GPSCs detected, six were predominantly found in Africa (GPSC22, GPSC21, GPSC17, GPSC33, GPSC34 and GPSC52). We found a significant decrease in PCV7 serotypes (19F, 6B, 23F and 14) and an increase in non-vaccine serotypes (NVT) (16F, 34, 35B and 11A) among children <2 years of age. The increase in NVTs was driven by pneumococcal lineages GPSC33, GPSC34, GPSC5 and GPSC22. Overall, a decrease in antibiotic resistance for 11 antimicrobials was detected in the PCV13 era. Further, we reported a higher resistance prevalence among vaccine types (VTs), as compared to NVTs; however, an increase in penicillin resistance among NVT was observed between the PCV7 and PCV13 eras. The carriage isolates from South Africa predominantly belonged to pneumococcal lineages, which are endemic to Africa. While the introduction of PCV resulted in an overall reduction of resistance in pneumococcal carriage isolates, an increase in penicillin resistance among NVTs was detected in children aged between 3 and 5 years, driven by the expansion of penicillin-resistant clones associated with NVTs in the PCV13 era.


Asunto(s)
Metagenómica , Streptococcus pneumoniae , Portador Sano/epidemiología , Niño , Preescolar , Humanos , Inmunización , Nasofaringe , Sudáfrica/epidemiología , Streptococcus pneumoniae/genética , Vacunas Conjugadas
20.
Nat Commun ; 13(1): 7417, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456554

RESUMEN

Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.


Asunto(s)
Cesárea , Ecosistema , Femenino , Embarazo , Recién Nacido , Humanos , Klebsiella , Metagenómica , Parto , Escherichia coli/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA