RESUMEN
MOTIVATION: Genome-scale metabolic network reconstructions (GENREs) are valuable for understanding cellular metabolism in silico. Several tools exist for automatic GENRE generation. However, these tools frequently (i) do not readily integrate with some of the widely-used suites of packaged methods available for network analysis, (ii) lack effective network curation tools, (iii) are not sufficiently user-friendly, and (iv) often produce low-quality draft reconstructions. RESULTS: Here, we present Reconstructor, a user-friendly, COBRApy-compatible tool that produces high-quality draft reconstructions with reaction and metabolite naming conventions that are consistent with the ModelSEED biochemistry database and includes a gap-filling technique based on the principles of parsimony. Reconstructor can generate SBML GENREs from three input types: annotated protein .fasta sequences (Type 1 input), a BLASTp output (Type 2), or an existing SBML GENRE that can be further gap-filled (Type 3). While Reconstructor can be used to create GENREs of any species, we demonstrate the utility of Reconstructor with bacterial reconstructions. We demonstrate how Reconstructor readily generates high-quality GENRES that capture strain, species, and higher taxonomic differences in functional metabolism of bacteria and are useful for further biological discovery. AVAILABILITY AND IMPLEMENTATION: The Reconstructor Python package is freely available for download. Complete installation and usage instructions and benchmarking data are available at http://github.com/emmamglass/reconstructor.
Asunto(s)
Genoma , Programas Informáticos , Bacterias/metabolismo , Redes y Vías Metabólicas , Bases de Datos FactualesRESUMEN
Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.
Asunto(s)
Genotipo , Redes y Vías Metabólicas , Fenotipo , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Humanos , Infecciones por Pseudomonas/microbiología , Redes y Vías Metabólicas/genética , Secuenciación Completa del Genoma/métodos , Tipificación de Secuencias Multilocus , Genoma Bacteriano , Variación GenéticaRESUMEN
Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multi-locus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.
RESUMEN
Gardnerella is the primary pathogenic bacterial genus present in the polymicrobial condition known as bacterial vaginosis (BV). Despite BV's high prevalence and associated chronic and acute women's health impacts, the Gardnerella pangenome is largely uncharacterized at both the genetic and functional metabolic levels. Here, we used genome-scale metabolic models to characterize in silico the Gardnerella pangenome metabolic content. We also assessed the metabolic functional capacity in a BV-positive cervicovaginal fluid context. The metabolic capacity varied widely across the pangenome, with 38.15% of all reactions being core to the genus, compared to 49.60% of reactions identified as being unique to a smaller subset of species. We identified 57 essential genes across the pangenome via in silico gene essentiality screens within two simulated vaginal metabolic environments. Four genes, gpsA, fas, suhB, and psd, were identified as core essential genes critical for the metabolic function of all analyzed bacterial species of the Gardnerella genus. Further understanding these core essential metabolic functions could inform novel therapeutic strategies to treat BV. Machine learning applied to simulated metabolic network flux distributions showed limited clustering based on the sample isolation source, which further supports the presence of extensive core metabolic functionality across this genus. These data represent the first metabolic modeling of the Gardnerella pangenome and illustrate strain-specific interactions with the vaginal metabolic environment across the pangenome. IMPORTANCE Bacterial vaginosis (BV) is the most common vaginal infection among reproductive-age women. Despite its prevalence and associated chronic and acute women's health impacts, the diverse bacteria involved in BV infection remain poorly characterized. Gardnerella is the genus of bacteria most commonly and most abundantly represented during BV. In this paper, we use metabolic models, which are a computational representation of the possible functional metabolism of an organism, to investigate metabolic conservation, gene essentiality, and pathway utilization across 110 Gardnerella strains. These models allow us to investigate in silico how strains may differ with respect to their metabolic interactions with the vaginal-host environment.
Asunto(s)
Vaginosis Bacteriana , Femenino , Humanos , Vaginosis Bacteriana/genética , Gardnerella , Gardnerella vaginalis/genética , Vagina/microbiología , Bacterias , Redes y Vías Metabólicas/genéticaRESUMEN
Nanoparticles (NP) are being increasingly explored as vehicles for targeted drug delivery because they can overcome free therapeutic limitations by drug encapsulation, thereby increasing solubility and transport across cell membranes. However, a translational gap exists from animal to human studies resulting in only several NP having FDA approval. Because of this, researchers have begun to turn toward physiologically based pharmacokinetic (PBPK) models to guide in vivo NP experimentation. However, typical PBPK models use an empirically derived framework that cannot be universally applied to varying NP constructs and experimental settings. The purpose of this study was to develop a physics-based multiscale PBPK compartmental model for determining continuous NP biodistribution. We successfully developed two versions of a physics-based compartmental model, models A and B, and validated the models with experimental data. The more physiologically relevant model (model B) had an output that more closely resembled experimental data as determined by normalized root mean squared deviation (NRMSD) analysis. A branched model was developed to enable the model to account for varying NP sizes. With the help of the branched model, we were able to show that branching in vasculature causes enhanced uptake of NP in the organ tissue. The models were solved using two of the most popular computational platforms, MATLAB and Julia. Our experimentation with the two suggests the highly optimized ODE solver package DifferentialEquations.jl in Julia outperforms MATLAB when solving a stiff system of ordinary differential equations (ODEs). We experimented with solving our PBPK model with a neural network using Julia's Flux.jl package. We were able to demonstrate that a neural network can learn to solve a system of ODEs when the system can be made non-stiff via quasi-steady-state approximation (QSSA). Our model incorporates modules that account for varying NP surface chemistries, multiscale vascular hydrodynamic effects, and effects of the immune system to create a more comprehensive and modular model for predicting NP biodistribution in a variety of NP constructs.