Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(23): 10252-10261, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38811014

RESUMEN

With octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) being considered for evaluation under the UN Stockholm Convention on Persistent Organic Pollutants, which specifically acknowledges risks of biomagnification of persistent organic pollutants in traditional foods, a study into the mechanism of the biomagnification process of D4 and D5 in Rainbow trout was conducted by combining the absorption-distribution-metabolism-excretion for bioaccumulation (ADME-B) approach to determine intestinal and somatic biotransformation rates and radiochemical analyses to identify metabolite formation. High rates of intestinal biotransformation of D4 and D5 (i.e., 2.1 (0.70 SE) and 0.88 (0.67 SE) day-1, respectively) and metabolite formation [i.e., 52.0 (17 SD)% of D4 and 56.5% (8.2 SD)% of D5 were metabolized] were observed that caused low dietary uptake efficiencies of D4 and D5 in fish of 15.5 (2.9 SE)% and 21.0 (6.5 SE)% and biomagnification factors of 0.44 (0.08 SE) for D4 and 0.78 (0.24 SE) kg-lipid·kg-lipid-1 for D5. Bioaccumulation profiles indicated little effect of growth dilution on the bioaccumulation of D4 and D5 in fish and were substantially different from those of PCB153. The study highlights the importance of intestinal biotransformation in negating biomagnification of substances in organisms and explains differences between laboratory tests and field observations of bioaccumulation of D4 and D5.


Asunto(s)
Biotransformación , Oncorhynchus mykiss , Siloxanos , Animales , Oncorhynchus mykiss/metabolismo , Siloxanos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bioacumulación , Dieta
2.
Environ Sci Technol ; 57(34): 12806-12818, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590934

RESUMEN

We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.


Asunto(s)
Fluorocarburos , Cadena Alimentaria , Animales , Aves , Albúminas , Agua , Lípidos
3.
Environ Res ; 213: 113755, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753377

RESUMEN

This study is the first to investigate the removal of naphthenic acids in a full-scale constructed wetland within the Alberta Oil Sands region. The average mass-removal efficiency for all O2-naphthenic acids measured in three separate deployments in the wetland ranged from 7.5% to 68.9% and appeared sensitive to physicochemical properties of the naphthenic acids, environmental conditions, and water quality. Treatment efficiency of individual naphthenic acids was found to increase with increasing carbon number and decreasing number of double bond equivalents in the molecule. Treatment efficiency was also found to increase with both higher initial turbidity in OSPW entering the wetland, and warmer average OSPW temperatures during wetland operation. Half-life times of naphthenic acids in the treatment wetland ranged between 8.9 and 39 days and were substantially lower than those in tailings ponds (i.e., 12.9-13.6 years) and laboratory studies focussed on bench-scale aerobic microbial biodegradation (i.e., 44-315 days). Using published dose-response data, biomimetic extraction measurements using solid phase microextraction fibers indicate that 14 days of wetland treatment resulted in a reduction in (4 d) deformity of Danio rerio from 50 to 16%, while exhibiting less than 1% toxic response for less sensitive toxic endpoints. The study concludes that wetland treatment is a feasible and productive treatment method for naphthenic acids in oil sands process-affected water due to a combination of sorption and biodegradation.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Ácidos Carboxílicos/química , Semivida , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 55(20): 13932-13941, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34590828

RESUMEN

Trophic magnification of cyclic volatile methyl siloxanes (cVMS) in a terrestrial food web was investigated by measuring concentrations of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) and two reference chemicals within air and biota samples from an avian food web located in a mixed urban-agricultural landscape. Terrestrial trophic magnification factors derived from lipid normalized concentrations (TMFLs) for D5 and D6 were 0.94 (0.17 SE) and 1.1 (0.23 SE) and not statistically different from 1 (p > 0.05); however, the TMFL of D4 was 0.62 (0.11 SE) and statistically less than 1 (p < 0.001). TMFLs of PCB-153 and p,p'-DDE were 5.6 (2.2 SE) and 6.1 (2.8 SE) and statistically greater than 1 (p < 0.001). TMFLs of cVMS in this terrestrial system were similar to those reported in aquatic systems. However, trophic magnification factors derived on a fugacity basis (TMFFs), which recognize differences in body temperature and lipid composition between organisms, were greater than corresponding TMFLs primarily because a temperature-induced thermodynamic biomagnification of hydrophobic chemicals occurs when endothermic organisms consume poikilothermic organisms. Therefore, we recommend that biomagnification studies of food webs including endothermic and poikilothermic organisms incorporate differences in body temperature and tissue composition to accurately characterize the biomagnification potential of chemicals.


Asunto(s)
Cadena Alimentaria , Contaminantes Químicos del Agua , Bioacumulación , Temperatura Corporal , Monitoreo del Ambiente , Siloxanos/análisis , Temperatura , Contaminantes Químicos del Agua/análisis
5.
Arch Environ Contam Toxicol ; 75(2): 295-305, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29550936

RESUMEN

Determining the biotransformation potential of commercial chemicals is critical for estimating their persistence in the aquatic environment. In vitro systems are becoming increasingly important as screening methods for assessing the potential for chemical metabolism. Depletion rate constants (kd) for several organic chemicals with high octanol-water partition coefficient (Kow) values (9-methylanthracene, benzo(a)pyrene, chrysene, and PCB-153) in rainbow trout hepatocytes were determined to estimate biotransformation rate constants (kMET) that were used in fish bioconcentration factor (BCF) models. Benzo[a]pyrene was rapidly biotransformed when incubated singly; however, its depletion rate constant (kd) declined 79% in a mixture of all four chemicals. Chrysene also exhibited significant biotransformation and its depletion rate constant declined by 50% in the mixture incubation. These data indicate that biotransformation rates determined using single chemicals may overestimate metabolism in environments containing chemical mixtures. Incubations with varying cell concentrations were used to determine whether cell concentration affected kd estimates. No statistically significant change in depletion rate constants were seen, possibly due to an increase in nonspecific binding of hydrophobic chemicals as cell density increased, decreasing overall biotransformation. A new model was used to estimate BCFs from kMET values calculated from empirically derived kd values. The inclusion of kMET in models resulted in significantly lower BCF values (compared kMET = 0). Modelled BCF values were consistent with empirically derived BCF values from the literature.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Oncorhynchus mykiss , Compuestos Orgánicos/química , Compuestos Orgánicos/farmacocinética , Animales , Antracenos , Benzo(a)pireno/farmacocinética , Biotransformación , Crisenos/farmacocinética , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Bifenilos Policlorados/farmacocinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacocinética
6.
Environ Sci Technol ; 50(24): 13299-13308, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993034

RESUMEN

In vivo dietary bioaccumulation experiments for 85 hydrophobic organic substances were conducted to derive the in vivo gastrointestinal biotransformation rates, somatic biotransformation rates, bioconcentration factors (BCF), and biomagnification factors (BMF) for improving methods for bioaccumulation assessment and to develop an in vivo biotransformation rate database for QSAR development and in vitro to in vivo biotransformation rate extrapolation. The capacity of chemicals to be biotransformed in fish was found to be highly dependent on the route of exposure. Somatic biotransformation was the dominant pathway for most chemicals absorbed via the respiratory route. Intestinal biotransformation was the dominant metabolic pathway for most chemicals absorbed via the diet. For substances not biotransformed or transformed exclusively in the body of the fish, the BCF and BMF appeared to be closely correlated. For substances subject to intestinal biotransformation, the same correlation did not apply. We conclude that intestinal biotransformation and bioavailability in water can modulate the relationship between the BCF and BMF. This study also supports a fairly simple rule of thumb that may be useful in the interpretation of dietary bioaccumulation tests; i.e., chemicals with a BMFL of <1 tend to exhibit BCFs based on either the freely dissolved (BCFWW,fd) or the total concentration (BCFWW,t) of the chemical in the water that is less than 5000.


Asunto(s)
Biotransformación , Peces/metabolismo , Animales , Dieta , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/metabolismo
7.
Arch Environ Contam Toxicol ; 70(1): 155-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26289814

RESUMEN

Resident killer whale populations in the NE Pacific Ocean are at risk due to the accumulation of pollutants, including polybrominated diphenyl ethers (PBDEs). To assess the impact of PBDEs in water and sediments in killer whale critical habitat, we developed a food web bioaccumulation model. The model was designed to estimate PBDE concentrations in killer whales based on PBDE concentrations in sediments and the water column throughout a lifetime of exposure. Calculated and observed PBDE concentrations exceeded the only toxicity reference value available for PBDEs in marine mammals (1500 µg/kg lipid) in southern resident killer whales but not in northern resident killer whales. Temporal trends (1993-2006) for PBDEs observed in southern resident killer whales showed a doubling time of ≈5 years. If current sediment quality guidelines available in Canada for polychlorinated biphenyls are applied to PBDEs, it can be expected that PBDE concentrations in killer whales will exceed available toxicity reference values by a large margin. Model calculations suggest that a PBDE concentration in sediments of approximately 1.0 µg/kg dw produces PBDE concentrations in resident killer whales that are below the current toxicity reference value for 95 % of the population, with this value serving as a precautionary benchmark for a management-based approach to reducing PBDE health risks to killer whales. The food web bioaccumulation model may be a useful risk management tool in support of regulatory protection for killer whales.


Asunto(s)
Monitoreo del Ambiente , Política Ambiental , Éteres Difenilos Halogenados/metabolismo , Modelos Teóricos , Contaminantes Químicos del Agua/metabolismo , Orca/metabolismo , Animales , Canadá , Cadena Alimentaria , Guías como Asunto , Éteres Difenilos Halogenados/análisis , Éteres Difenilos Halogenados/normas , Océano Pacífico , Contaminantes Químicos del Agua/normas
9.
Environ Toxicol Chem ; 43(1): 42-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37818875

RESUMEN

The bioaccumulation behavior, including the uptake, internal distribution, depuration, and biotransformation rates, of three widely used linear methyl-siloxanes was investigated in rainbow trout. Dietary uptake efficiencies of octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), and dodecamethylpentasiloxane (L5) were 15% (3.3% standard error [SE]), 8.6% (1.4% SE), and 15% (1.8% SE), respectively, and for L3 and L4 were well below those of nonmetabolizable reference chemicals with similar octanol-water partition coefficients, suggesting significant intestinal biotransformation of L3 and L4. Somatic biotransformation rate constants were 0.024 (0.003 SE) day-1 for L3 and 0.0045 (0.0053 SE) day-1 for L4 and could not be determined for L5. Lipid-normalized biomagnification factors for L3, L4, and L5 were 0.24 (0.02 SE), 0.24 (0.01 SE), and 0.62 (0.05 SE) kg-lipid kg-lipid-1 , respectively. Bioconcentration factors standardized to a 5% lipid content fish for water in Canadian oligotrophic lakes with a dissolved organic carbon content of 7.1 mg L-1 were 2787 (354 SE) for L3, 2689 (312 SE) for L4, and 1705 (418 SE) L kg-wet weight-1 , respectively, and 3085 (392 SE) for L3, 4227 (490 SE) for L4, and 3831 (938 SE) L kg-wet weight-1 in water with a dissolved organic carbon content of 2.0 mg L-1 . A comparison of 238 bioaccumulation profiles for 166 different chemicals shows that the bioaccumulation profiles for L3, L4, and L5 are vastly different from those of other very hydrophobic compounds found in the environment. Environ Toxicol Chem 2024;43:42-51. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Bioacumulación , Siloxanos/análisis , Siloxanos/metabolismo , Materia Orgánica Disuelta , Canadá , Oncorhynchus mykiss/metabolismo , Contaminantes Químicos del Agua/análisis , Agua/metabolismo , Octanoles/metabolismo
10.
Integr Environ Assess Manag ; 20(3): 674-698, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36688277

RESUMEN

The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.

11.
Environ Sci Technol ; 47(3): 1381-9, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23305554

RESUMEN

Investigations into the biodegradation potential of perfluorooctane sulfonate (PFOS)-precursor candidates have focused on low molecular weight substances (e.g., N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE)) in wastewater treatment plant sludge. Few data are available on PFOS-precursor biodegradation in other environmental compartments, and nothing is known about the stability of high-molecular-weight perfluorooctane sulfonamide-based substances such as the EtFOSE-based phosphate diester (SAmPAP diester) in any environmental compartment. In the present work, the biodegradation potential of SAmPAP diester and EtFOSE by bacteria in marine sediments was evaluated over 120 days at 4 and 25 °C. At both temperatures, EtFOSE was transformed to a suite of products, including N-ethyl perfluorooctane sulfonamidoacetate, perfluorooctane sulfonamidoacetate, N-ethyl perfluorooctane sulfonamide, perfluorooctane sulfonamide, and perfluorooctane sulfonate. Transformation was significantly more rapid at 25 °C (t(1/2) = 44 ± 3.4 days; error represents standard error of the mean (SEM)) compared to 4 °C (t(1/2) = 160 ± 17 days), but much longer than previous biodegradation studies involving EtFOSE in sludge (t(1/2) ∼0.7-4.2 days). In contrast, SAmPAP diester was highly recalcitrant to microbial degradation, with negligible loss and/or associated product formation observed after 120 days at both temperatures, and an estimated half-life of >380 days at 25 °C (estimated using the lower bounds 95% confidence interval of the slope). We hypothesize that the hydrophobicity of SAmPAP diester reduces its bioavailability, thus limiting biotransformation by bacteria in sediments. The lengthy biodegradation half-life of EtFOSE and recalcitrant nature of SAmPAP diester in part explains the elevated concentrations of PFOS-precursors observed in urban marine sediments from Canada, Japan, and the U.S, over a decade after phase-out of their production and commercial application in these countries.


Asunto(s)
Ésteres/metabolismo , Fluorocarburos/metabolismo , Sedimentos Geológicos/química , Hidrocarburos Fluorados/metabolismo , Organofosfatos/metabolismo , Sulfonamidas/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Sedimentos Geológicos/microbiología , Semivida
12.
Integr Environ Assess Manag ; 19(6): 1433-1456, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36880196

RESUMEN

This study investigates and reviews methods for the assessment of the terrestrial bioaccumulation potential of hydrocarbons and related organic substances. The study concludes that the unitless biomagnification factor (BMF) and/or the trophic magnification factor (TMF) are appropriate, practical, and thermodynamically meaningful metrics for identifying bioaccumulative substances in terrestrial food chains. The study shows that various methods, including physical-chemical properties like the KOA and KOW , in vitro biotransformation assays, quantitative structure-activity relationships, in vivo pharmacokinetic and dietary bioaccumulation tests, and field-based trophic magnification studies, can inform on whether a substance has the potential to biomagnify in a terrestrial food chain as defined by a unitless BMF exceeding 1. The study further illustrates how these methods can be arranged in a four-tier evaluation scheme for the purpose of screening assessments that aim to minimize effort and costs and expediate bioaccumulation assessment of the vast numbers of organic substances in commerce, identifies knowledge gaps, and provides recommendations for further research to improve bioaccumulation assessment. Integr Environ Assess Manag 2023;19:1433-1456. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Monitoreo del Ambiente , Cadena Alimentaria , Bioacumulación , Monitoreo del Ambiente/métodos , Hidrocarburos , Ecotoxicología
13.
Sci Adv ; 9(41): eadi8082, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824609

RESUMEN

Halomethoxybenzenes are pervasive in the atmosphere at concentration levels that exceed, often by an order of magnitude, those of the persistent organic pollutants with which they share the attributes of persistence and potential for long-range transport, bioaccumulation, and toxic effects. Long ignored by environmental chemists because of their predominantly natural origin-namely, synthesis by terrestrial wood-rotting fungi, marine algae, and invertebrates-knowledge of their environmental pathways remains limited. Through measuring the spatial and seasonal variability of four halomethoxybenzenes in air and precipitation and performing complementary environmental fate simulations, we present evidence that these compounds undergo continental-scale transport in the atmosphere, which they enter largely by evaporation from water. This also applies to halomethoxybenzenes originating in terrestrial environments, such as drosophilin A methyl ether, which reach aquatic environments with runoff, possibly in the form of their phenolic precursors. Our findings contribute substantially to the comprehension of sources and fate of halomethoxybenzenes, illuminating their widespread atmospheric dispersal.


Asunto(s)
Atmósfera , Invertebrados , Animales , Monitoreo del Ambiente
14.
Environ Sci Technol ; 46(22): 12655-63, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23098163

RESUMEN

The development of an area-based polychlorinated biphenyl (PCB) food-web bioaccumulation model enabled a critical evaluation of the efficacy of sediment quality criteria and prey tissue residue guidelines in protecting fish-eating resident killer whales of British Columbia and adjacent waters. Model-predicted and observed PCB concentrations in resident killer whales and Chinook salmon were in good agreement, supporting the model's application for risk assessment and criteria development. Model application shows that PCB concentrations in the sediments from the resident killer whale's Critical Habitats and entire foraging range leads to PCB concentrations in most killer whales that exceed PCB toxicity threshold concentrations reported for marine mammals. Results further indicate that current PCB sediment quality and prey tissue residue criteria for fish-eating wildlife are not protective of killer whales and are not appropriate for assessing risks of PCB-contaminated sediments to high trophic level biota. We present a novel methodology for deriving sediment quality criteria and tissue residue guidelines that protect biota of high trophic levels under various PCB management scenarios. PCB concentrations in sediments and in prey that are deemed protective of resident killer whale health are much lower than current criteria values, underscoring the extreme vulnerability of high trophic level marine mammals to persistent and bioaccumulative contaminants.


Asunto(s)
Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Cadena Alimentaria , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Orca/metabolismo , Animales , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/metabolismo , Colombia Británica , Relación Dosis-Respuesta a Droga , Especies en Peligro de Extinción , Sedimentos Geológicos/análisis , Invertebrados/efectos de los fármacos , Invertebrados/metabolismo , Modelos Biológicos , Océanos y Mares , Fitoplancton/efectos de los fármacos , Fitoplancton/metabolismo , Bifenilos Policlorados/metabolismo , Medición de Riesgo , Salmón/metabolismo , Contaminantes Químicos del Agua/metabolismo , Zooplancton/efectos de los fármacos , Zooplancton/metabolismo
15.
Environ Sci Technol ; 46(1): 410-8, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22126411

RESUMEN

Methods for rapid and cost-effective assessment of the biotransformation potential of very hydrophobic and potentially bioaccumulative chemicals in mammals are urgently needed for the ongoing global evaluation of the environmental behavior of commercial chemicals. We developed and tested a novel solvent-free, thin-film sorbent-phase in vitro dosing system to measure the in vitro biotransformation rates of very hydrophobic chemicals in male Sprague-Dawley rat liver S9 homogenates and compared the rates to those measured by conventional solvent-delivery dosing. The thin-film sorbent-phase dosing system using ethylene vinyl acetate coated vials was developed to eliminate the incomplete dissolution of very hydrophobic substances in largely aqueous liver homogenates, to determine biotransformation rates at low substrate concentrations, to measure the unbound fraction of substrate in solution, and to simplify chemical analysis by avoiding the difficult extraction of test chemicals from complex biological matrices. Biotransformation rates using sorbent-phase dosing were 2-fold greater than those measured using solvent-delivery dosing. Unbound concentrations of very hydrophobic test chemicals were found to decline with increasing S9 and protein concentrations, causing measured biotransformation rates to be independent of S9 or protein concentrations. The results emphasize the importance of specifying both protein content and unbound substrate fraction in the measurement and reporting of in vitro biotransformation rates of very hydrophobic substances, which can be achieved in a thin-film sorbent-phase dosing system.


Asunto(s)
Monitoreo del Ambiente/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/metabolismo , Compuestos Orgánicos/metabolismo , Adsorción , Animales , Biotransformación , Cinética , Masculino , Modelos Biológicos , Ratas , Ratas Sprague-Dawley , Solventes/química , Fracciones Subcelulares/metabolismo , Factores de Tiempo
16.
Environ Sci Technol ; 46(12): 6505-14, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22591467

RESUMEN

The environmental occurrence of perfluorooctane sulfonate (PFOS) can arise from its direct use as well as from transformation of precursors ((N-alkyl substituted) perfluorooctane sulfonamides; FOSAMs). Perfluorooctane sulfonamidoethanol-based phosphate (SAmPAP) esters are among numerous potential PFOS-precursors which have not been previously detected in the environment and for which little is known about their stability. Based on their high production volume during the 1970s-2002 and widespread use in food contact paper and packaging, SAmPAP esters may be potentially significant sources of PFOS. Here we report for the first time on the environmental occurrence of SAmPAP diester in marine sediments from an urbanized marine harbor in Vancouver, Canada. SAmPAP diester concentrations in sediment (40-200 pg/g dry weight) were similar to those of PFOS (71-180 pg/g). A significant (p < 0.05) correlation was observed between SAmPAP diester and N-ethyl perfluorooctane sulfonamido acetate (an anticipated degradation product of SAmPAP diester). ∑PFOS-precursor (FOSAM) concentrations in sediment (120-1100 pg/g) were 1.6-24 times greater than those of PFOS in sediment. Although SAmPAP diester was not detected in water, PFOS was observed at concentrations up to 710 pg/L. Among the per- and polyfluoroalkyl substances monitored in the present work, mean log-transformed sediment/water distribution coefficients ranged from 2.3 to 4.3 and increased with number of CF(2) units and N-alkyl substitution (in the case of FOSAMs). Overall, these results highlight the importance of FOSAMs as potentially significant sources of PFOS, in particular for urban marine environments.


Asunto(s)
Ácidos Alcanesulfónicos/análisis , Fluorocarburos/análisis , Sedimentos Geológicos/química , Agua de Mar , Contaminantes Químicos del Agua/química , Ácidos Alcanesulfónicos/química , Fluorocarburos/química , Control de Calidad
17.
Environ Sci Process Impacts ; 24(8): 1152-1164, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35678632

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a large class of highly fluorinated anthropogenic chemicals. Some PFAS bioaccumulate in aquatic food webs, thereby posing risks for seafood consumers. Existing models for persistent organic pollutants (POPs) perform poorly for ionizable PFAS. Here we adapt a well-established food web bioaccumulation model for neutral POPs to predict the bioaccumulation behavior of six perfluoroalkyl acids (PFAAs) and two perfluoroalkyl ether acids (HFPO-DA, 9-Cl-PF3ONS) produced as PFAA replacements. The new model includes sorption to blood plasma proteins and phospholipids, empirically parameterized membrane transport, and renal elimination for PFAAs. Improved performance relative to prior models without these updates is shown by comparing simulations to field and lab measurements. PFAS with eight or more perfluorinated carbons (ηpfc ≥ 8, i.e., C8 perfluorosulfonic acid, C10-C11 perfluorocarboxylic acid, 9-Cl-PF3ONS) are often the most abundant in aquatic food webs. The new model reproduces their observed bioaccumulation potential within a factor of two for >80% of fish species, indicating its readiness to support development of fish consumption advisories for these compounds. Results suggest bioaccumulation of ηpfc ≥ 8 PFAS is primarily driven by phospholipid partitioning, and that renal elimination is negligible for these compounds. However, specific protein binding mechanisms are important for reproducing the observed tissue concentrations of many shorter-chain PFAAs, including protein transporter-mediated renal elimination. Additional data on protein-binding and membrane transport mechanisms for PFAS are needed to better understand the biological behavior of shorter-chain PFAAs and their alternatives.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/metabolismo , Animales , Bioacumulación , Peces/metabolismo , Fluorocarburos/análisis , Cadena Alimentaria , Eliminación Renal , Contaminantes Químicos del Agua/metabolismo
18.
Environ Toxicol Chem ; 41(10): 2565-2579, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35856879

RESUMEN

To advance methods for bioaccumulation assessment of organic substances in air-breathing organisms, the present study developed an in vitro approach for screening neutral hydrophobic organic substances for their bioaccumulation potential in air-breathing organisms consisting of (1) depletion assays for chemicals in rat liver S9 subcellular fractions, (2) in vitro-in vivo extrapolation, and (3) whole-organism bioaccumulation modeling to assess the biomagnification potential of neutral organic substances in the rat. Testing of the in vitro method on 14 test chemicals of potentially biomagnifying substances showed that the bioassays could be conducted with a high level of reproducibility and that in vitro-derived elimination rate constants were in good agreement with in vivo-determined elimination rate constants in the rat. Exploring the potential of the in vitro approach for screening organic chemicals for bioaccumulation in air-breathing organisms indicated that chemical substances that exhibit a depletion rate constant in the S9 in vitro bioassay ≥0.3 h-1 are not expected to biomagnify in rats independent of their octanol-water partitioning coefficient (KOW ) or octanol-air partitioning coefficient (KOA ). The high level of reproducibility achieved in the test, combined with the good agreement between in vitro-derived and in vivo-determined depuration rates, suggests that the in vitro approach in combination with a KOA - and KOW -based screening approach has good potential for screening chemicals in commerce for their bioaccumulation potential in air-breathing organisms in a cost-effective and expedient manner, especially if the bioassay can be automated. Environ Toxicol Chem 2022;41:2565-2579. © 2022 SETAC.


Asunto(s)
Hígado , Compuestos Orgánicos , Animales , Bioacumulación , Biotransformación , Hígado/metabolismo , Octanoles/química , Compuestos Orgánicos/química , Ratas , Reproducibilidad de los Resultados , Agua/química
19.
Chemosphere ; 281: 130948, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289615

RESUMEN

To investigate the bioaccumulation behavior of dodecamethylcyclohexasiloxane (D6, CAS number: 540-97-6) in fish, an OECD-305 style dietary bioaccumulation study of D6 in rainbow trout was conducted in the presence of non-metabolizable reference chemicals. The dietary uptake absorption efficiency of D6 was 14 (3 SE) % and lower than that of the reference chemicals which ranged between 22 (2 SE) to 60 (8 SE) %. The concentration of D6 in the body of the fish showed a rapid 40% drop during the first day of the depuration phase, followed by a slower decline during the remainder of the depuration period. The overall depuration rate constant of D6 was 0.016 (0.0026 SE) d-1 and significantly greater than those of PCB153 and PCB209, which were not significantly different from zero. During the depuration phase, when fish body weight did not significantly change over time, depuration of D6 appears to be almost entirely due to biotransformation in the body of the fish. The biomagnification factor of D6 in rainbow trout was 0.38 (0.14 SE) kg-lipid kg-lipid-1, indicating a lack of biomagnification. The bioconcentration factor (BCF) of D6 in Rainbow trout was estimated at 1909 (483 SE) L kg-1 wet for natural waters of mostly oligotrophic lakes in Northern Canada with an average concentration of total organic carbon of 7.1 mg L-1. Comparing the bioaccumulation profile of D6 to that of 238 similar profiles for 166 unique chemicals indicates that the bioaccumulation capacity of D6 is markedly less than that of many very hydrophobic organochlorines.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Bioacumulación , Canadá , Oncorhynchus mykiss/metabolismo , Siloxanos , Contaminantes Químicos del Agua/análisis
20.
Environ Toxicol Chem ; 40(8): 2145-2155, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33930216

RESUMEN

Bioaccumulation of hydrophobic pollutants in an aquatic food web is governed by exposure concentrations in sediment and water phases and by complex trophic interactions among the various species. We demonstrate that biological interactions and exposure from the chemical environment can be deconvoluted for aquatic food webs to allow clearer assessments of the role of thermodynamic drivers from the sediment and surface water phases. We first demonstrate the feasibility of this deconvolution mathematically for hypothetical food webs with 3 and 4 interacting species and for more realistic real-world food webs with >10 species of aquatic organisms (i.e., the freshwater lake food web in Western Lake Erie [ON, Canada] and the marine food web in New Bedford Harbor [MA, USA]). Our results show both mathematically (for the simple food webs) and computationally (for the more complex food webs) that a deconvoluted food web model parameterized for site-specific conditions can predict the bioaccumulation of polychlorinated biphenyls in aquatic organisms same as existing complex food web models. The merit of this approach is that once the thermodynamic and biological contributions to food web bioaccumulation are computed for an ecosystem, the deconvoluted model provides a relatively simple approach for calculating concentrations of chemicals in organisms for a range of possible surface water and sedimentary concentrations. This approach is especially useful for calculating bioaccumulation of pollutants from freely dissolved concentrations measured using passive sampling devices or predicted by fate and transport models. The deconvoluted approach makes it possible to develop regulatory guidelines for a set of surface water and sediment (or porewater) concentration combinations for a water body that is able to achieve a risk-based target for fish concentration. Environ Toxicol Chem 2021;40:2145-2155. © 2021 SETAC.


Asunto(s)
Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Biología , Ecosistema , Monitoreo del Ambiente/métodos , Peces , Cadena Alimentaria , Lagos , Bifenilos Policlorados/análisis , Termodinámica , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA