Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(46): 18940-18954, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37935007

RESUMEN

Synthetic methodologies were developed to achieve the preparation of ligands L1 and L2 consisting of tacn- and pyclen-based chelators decorated with pyridinylphosphonic pendant arms combined with ethylpicolinamide or acetate coordinating functions, respectively. Phosphonate functions have been selected for their high affinity toward Ln3+ ions compared to their carboxylated counterparts and for their steric hindrance that favors the formation of less-hydrated complexes. Thanks to regiospecific N-functionalization of the macrocyclic backbones, the two ligands were isolated with good yields and implicated in a comprehensive photophysical study for the complexation of Eu3+, Tb3+, and Yb3+. The coordination behavior of L1 and L2 with these cations has been first investigated by means of a combination of UV-vis absorption spectroscopy, steady-state and time-resolved luminescence spectroscopy, and 1H and 31P NMR titration experiments. Structural characterization in solution was assessed by NMR spectroscopy, corroborated by theoretical calculations. Spectroscopic characterization of the Ln3+ complexes of L1 and L2 was done in water and D2O and showed the effective sensitization of the lanthanide metal-centered emission spectra, each exhibiting typical lanthanide emission bands. The results obtained for the phosphonated ligands were compared with those reported previously for the corresponding carboxylated analogues.

2.
Inorg Chem ; 62(35): 14326-14338, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37602400

RESUMEN

We present a detailed analysis of the 1H NMR chemical shifts and transverse relaxation rates of three small Dy(III) complexes having different symmetries (C3, D2 or C2). The complexes show sizeable emission in the visible region due to 4F9/2 → 6HJ transitions (J = 15/2 to 11/2). Additionally, NIR emission is observed at ca. 850 (4F9/2 → 6H7/2), 930 (4F9/2 → 6H5/2), 1010 (4F9/2 → 6F9/2), and 1175 nm (4F9/2 → 6F7/2). Emission quantum yields of 1-2% were determined in aqueous solutions. The emission lifetimes indicate that no water molecules are present in the inner coordination sphere of Dy(III), which in the case of [Dy(CB-TE2PA)]+ was confirmed through the X-ray crystal structure. The 1H NMR paramagnetic shifts induced by Dy(III) were found to be dominated by the pseudocontact mechanism, though, for some protons, contact shifts are not negligible. The analysis of the pseudocontact shifts provided the magnetic susceptibility tensors of the three complexes, which were also investigated using CASSCF calculations. The transverse 1H relaxation data follow a good linear correlation with 1/r6, where r is the distance between the Dy(III) ion and the observed proton. This indicates that magnetic anisotropy is not significantly affecting the relaxation of 1H nuclei in the family of complexes investigated here.

3.
Chem Sci ; 15(9): 3048-3059, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425527

RESUMEN

In this perspective, we summarise the major milestones to date in the field of molecular upconversion (UC) with lanthanide based coordination complexes. This begins from the leap firstly from solid-state to nanoparticular regimes, and further down the scale to the molecular domain. We explain the mechanistic intricacies of each differing way of generating upconverted photons, critiquing them and outlining our views on the benefits and limitations of each process, also offering our perspective and opinion on where these new molecular UC edifices will take us. This nascent area is already rapidly expanding and improving, having increased in luminance efficiency by more than four orders of magnitude in the last decade: we conclude that the future is bright for molecular UC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA